The distribution of globular clusters in kinematic spaces does not trace the accretion history of the host galaxy

Author:

Pagnini G.,Di Matteo P.,Khoperskov S.ORCID,Mastrobuono-Battisti A.ORCID,Haywood M.,Renaud F.ORCID,Combes F.ORCID

Abstract

Context. Reconstructing how all the stellar components of the Galaxy formed and assembled over time by studying the properties of the stars that form it is the aim of Galactic archaeology. Thanks to the launch of the ESA Gaia astrometric mission and the development of many spectroscopic surveys in recent years, we are for the first time in the position to delve into the layers of the past of the Galaxy. Globular clusters play a fundamental role in this research field since they are among the oldest stellar systems in the MW and thus bear witness to its entire past. Aims. As a natural result of galaxy formation, globular clusters did not necessarily all form in the Galaxy itself. Indeed, a fraction of them could have been formed in satellite galaxies accreted by the Milky Way over time. In recent years, there have been several attempts to constrain the nature of clusters (accreted or formed in the Milky Way itself) through the analysis of kinematic spaces, such as the E − Lz, Lperp − Lz, eccentricity − Lz, and the action space, as well as attempts to reconstruct the properties of the accretion events experienced by the Milky Way through time from this kind of analysis. This work aims to test a widely used assumption about the clustering of the accreted populations of globular clusters in the integrals of motions space. Methods. In this paper we analyse a set of dissipationless N-body simulations that reproduce the accretion of one or two satellites with their globular cluster population on a Milky Way-type galaxy. Results. Our results demonstrate that a significant overlap between accreted and ‘kinematically heated’ in situ globular clusters is expected in kinematic spaces for mergers with mass ratios of 1:10. In contrast with the standard assumptions made in the literature so far, we find that accreted globular clusters do not show dynamical coherence, that is, they do not cluster in kinematic spaces. In addition, we show that globular clusters can also be found in regions dominated by stars that have a different origin (i.e. a different progenitor). This casts doubt on the association between clusters and field stars that is generally made in the literature and is used to assign them to a common origin. By means of Gaussian mixture models, we demonstrate that the overlap of clusters is not only a projection effect on specific planes but is also found when the whole set of kinematic properties (i.e. E, Lz, Lperp, eccentricity, radial, and vertical actions) is taken into account. Overall, our findings severely question the recovered accretion history of the Milky Way based on the phase-space clustering of the globular cluster population.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3