Exploring the genesis of spiral galaxies

Author:

Breda Iris,Papaderos PolychronisORCID

Abstract

Context. A tantalizing enigma in extragalactic astronomy concerns the chronology and driving mechanisms of the build-up of late-type galaxies (LTGs). The standard scenario envisages two formation routes, with classical bulges (CBs) assembling first in a quick and violent quasi-monolithic episode followed by gradual disk assembly, and pseudo-bulges (PBs) progressively forming over gigayear-long timescales through gentle gas inflow from the disk and in situ star formation. The expectation from this antagonistic rationale is the segregation of present-day LTG bulges into two evolutionary distinct groups, which is in sharp contrast with recent observations. Aims. The present study aims for a thorough investigation of the star formation history (SFH) of LTGs with its ultimate goal being to outline a coherent framework for the formation and evolution of spiral galaxies and their main stellar components. Methods. Using population spectral synthesis models, we analyse the spatially resolved SFH of bulges and disks of 135 LTGs from the CALIFA survey, covering the relevant range in LTG mass. Complementarily, characteristic physical properties of bulges and disks, such as mean colours, mass- and light-weighted stellar age and metallicity, and EW(Hα), were contrasted with predictions from evolutionary synthesis models, by adopting exponentially declining SFHs with e-folding times τ between 0.1 and 20 Gyr. Results. Analysis of the SFH of roughly half a million spaxels consistently reveals that the main physical and evolutionary properties of both bulges and disks are continuously distributed across present-day total stellar mass ℳ⋆, T. The τ in spiral galaxies with log(ℳ⋆, T) > 10 increases from the centre to the periphery, suggesting that these systems grow in an inside-out fashion. Quite importantly, the radial gradient of τ in an individual galaxy increases with increasing ℳ⋆, T, which is consistent with a high bulge-to-disk age contrast in high-mass spirals, while lower-mass LTGs display roughly the same τ throughout their entire radial extent, with intermediate mass galaxies in between. Predictions obtained through evolutionary synthesis are overall consistent with observed properties. Finally, bulges and disks of higher mass galaxies exhibit shorter formation timescales as compared to their lower mass counterparts. Conclusions. Collectively, the obtained results evince a coherent and unified picture for the formation and evolution of LTGs, in which PBs and CBs denote extremities of a continuous mass sequence. Our findings are consistent with the framework where bulges are assembled jointly with their parent disks by gradual inside-out growth, at a pace that is regulated by the depth of the galactic potential. This postulate is further supported by the fact that the revealed correlations are entirely devoid of a bimodality, as it would be expected if CBs and PBs were to emerge from two distinct formation routes.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3