Impact of a companion and of chromospheric emission on the shape of chromosome maps for globular clusters

Author:

Martins F.,Morin J.,Charbonnel C.,Lardo C.,Chantereau W.

Abstract

Context. Globular clusters (GCs) host multiple populations of stars that are well-separated in a photometric diagram – the chromosome map – built from specific Hubble Space Telescope (HST) filters. Stars from different populations feature at various locations on this diagram due to peculiar chemical compositions. Stars of the first population, with field star-like abundances, sometimes show an unexpected extended distribution in the chromosome map. Aims. We aim to investigate the role of binaries and chromospheric emission on HST photometry of globular clusters’ stars. We quantify their respective effects on the position of stars in the chromosome map, especially among the first population. Methods. We computed atmosphere models and synthetic spectra for stars of different chemical compositions, based on isochrones produced by stellar evolution calculations with abundance variations representative of first and second populations in GCs. From this we built synthetic chromosome maps for a mixture of stars of different chemical compositions. We subsequently replaced a fraction of stars with binaries, or stars with chromospheric emission, using synthetic spectroscopy. We studied how the position of stars is affected in the chromosome map. Results. Binaries can, in principle, explain the extension of the first population in the chromosome map. However, we find that given the binary fraction reported for GCs, the density of stars in the extended part is too small. Another difficulty of the binary explanation is that the shape of the distribution of the first population in the chromosome map is different in clusters with similar binary fractions. Also, the decrease of the binary fraction with radius is not mirrored in the shape of the chromosome map. Additionally, we find that the contribution of chromospheric emission lines to the HST photometry is too small to have an observable impact on the shape of the chromosome map. Continuum chromospheric emission has an effect qualitatively similar to binaries. Conclusions. We conclude that binaries do have an impact on the morphology of the chromosome map of GCs, but they are unlikely to explain entirely the shape of the extended distribution of the first population stars. Uncertainties in the properties of continuum chromospheric emission of stars in GCs prevent any quantitative conclusion. Therefore, the origin of the extended first population remains unexplained.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3