Variability of transit light curves of Kepler objects of interest

Author:

Arkhypov O. V.,Khodachenko M. L.,Hanslmeier A.

Abstract

Context. Hitherto, the study of exoplanetary transit timing and duration variability has supposed transit light curves (TLCs) to be symmetric, suggesting a priori a spherical shape for the transiting object, for example, an exoplanet. As a result, the independent positions of transit borders are unknown. However, the borders of TLCs are most sensitive to the presence of exo-rings and/or dust formations of great interest. Aims. For the first time we check for a timing variability of independently treated borders of transits of different types of exoplanets. Methods. Using quadratic approximation for the start-, end-, and minimum parts of the long-cadence TLCs from the Kepler mission archive after their whitening and phase folding, we find the corresponding transit border timings: Δts, Δte, respectively, and the TLC minimum time Δtm. These parameters were found separately for each folded TLC constructed in the consequent non-overlapping time-windows with the respective medium time tw. Temporal and cross-correlation analysis of the obtained series of Δts(tw), Δte(tw), and Δtm(tw) were applied for the detection and diagnostics of variability of transit borders and TLC asymmetry. Results. Among the considered TLCs of 98 Kepler objects of interest (KOIs), 15 confirmed giant exoplanets and 5 objects with still debatable status (probably non-planets) show variations in their transit timing parameters at timescales from ≈400 to ≳1500 days. These variations are especially well manifested as an anti-correlation between Δts and Δte, indicating variability in the dimensions of transiting shadows, especially along their trajectories. There are also objects with well pronounced oscillations of transit border timing and asymmetry. Conclusions. The discovered variability of transit timing is important as an indicator of large-scale non-stationary processes in the atmospheres of KOIs, as well as dust and aerosol generation in their upper layers and in their close vicinity. These findings highlight the need for a dedicated and detailed study.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3