Nucleosynthetic yields of Z = 10−5 intermediate-mass stars

Author:

Gil-Pons P.ORCID,Doherty C. L.,Gutiérrez J.,Campbell S. W.,Siess L.,Lattanzio J. C.

Abstract

Context. Observed abundances of extremely metal-poor stars in the Galactic halo hold clues for understanding the ancient universe. Interpreting these clues requires theoretical stellar models in a wide range of masses in the low-metallicity regime. The existing literature is relatively rich with extremely metal-poor massive and low-mass stellar models. However, relatively little information is available on the evolution of intermediate-mass stars of Z ≲ 10−5, and the impact of the uncertain input physics on the evolution and nucleosynthesis has not yet been systematically analysed. Aims. We aim to provide the nucleosynthetic yields of intermediate-mass Z = 10−5 stars between 3 and 7.5 M, and quantify the effects of the uncertain wind rates. We expect these yields could eventually be used to assess the contribution to the chemical inventory of the early universe, and to help interpret abundances of selected C-enhanced extremely metal-poor (CEMP) stars. Methods. We compute and analyse the evolution of surface abundances and nucleosynthetic yields of Z = 10−5 intermediate-mass stars from their main sequence up to the late stages of their thermally pulsing (Super) AGB phase, with different prescriptions for stellar winds. We use the postprocessing code MONSOON to compute the nucleosynthesis based on the evolution structure obtained with the Monash-Mount Stromlo stellar evolution code MONSTAR. By comparing our models and others from the literature, we explore evolutionary and nucleosynthetic trends with wind prescriptions and with initial metallicity (in the very low-Z regime). We also compare our nucleosynthetic yields to observations of CEMP-s stars belonging to the Galactic halo. Results. The yields of intermediate-mass extremely metal-poor stars reflect the effects of very deep or corrosive second dredge-up (for the most massive models), superimposed with the combined signatures of hot-bottom burning and third dredge-up. Specifically, we confirm the reported trend that models with initial metallicity Zini ≲ 10−3 give positive yields of 12C, 15N, 16O, and 26Mg. The 20Ne, 21Ne, and 24Mg yields, which were reported to be negative at Zini ≳ 10−4, become positive for Z = 10−5. The results using two different prescriptions for mass-loss rates differ widely in terms of the duration of the thermally pulsing (Super) AGB phase, overall efficiency of the third dredge-up episode, and nucleosynthetic yields. We find that the most efficient of the standard wind rates frequently used in the literature seems to favour agreement between our yield results and observational data. Regardless of the wind prescription, all our models become N-enhanced EMP stars.

Funder

Spanish Ministry of Science and Technology

Deutsche Forschungsgemeinschaft, DFG\/

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3