Seeds of Life in Space (SOLIS)

Author:

Favre C.,Vastel C.,Jimenez-Serra I.,Quénard D.,Caselli P.,Ceccarelli C.,Chacón-Tanarro A.,Fontani F.,Holdship J.,Oya Y.,Punanova A.,Sakai N.,Spezzano S.,Yamamoto S.,Neri R.,López-Sepulcre A.,Alves F.,Bachiller R.,Balucani N.,Bianchi E.,Bizzocchi L.,Codella C.,Caux E.,De Simone M.,Enrique Romero J.,Dulieu F.,Feng S.,Jaber Al-Edhari A.,Lefloch B.,Ospina-Zamudio J.,Pineda J.,Podio L.,Rimola A.,Segura-Cox D.,Sims I. R.,Taquet V.,Testi L.,Theulé P.,Ugliengo P.,Vasyunin A. I.,Vazart F.,Viti S.,Witzel A.

Abstract

Aims. The Seeds Of Life In Space IRAM/NOEMA large program aims at studying a set of crucial complex organic molecules in a sample of sources with a well-known physical structure that covers the various phases of solar-type star formation. One representative object of the transition from the prestellar core to the protostar phases has been observed toward the very low luminosity object (VeLLO) L1521F. This type of source is important to study to link prestellar cores and Class 0 sources and also to constrain the chemical evolution during the process of star formation. Methods. Two frequency windows (81.6–82.6 GHz and 96.65–97.65 GHz) were used to observe the emission from several complex organics toward the L1521F VeLLO. These setups cover transitions of ketene (H2CCO), propyne (CH3CCH), formamide (NH2CHO), methoxy (CH3O), methanol (CH3OH), dimethyl ether (CH3OCH3), and methyl formate (HCOOCH3). Results. Only two transitions of methanol (A+, E2) have been detected in the narrow window centered at 96.7 GHz (with an upper limit on E1) in a very compact emission blob (~7′′ corresponding to ~1000 au) toward the northeast of the L1521F protostar. The CS 2–1 transition is also detected within the WideX bandwidth. Consistently with what has been found in prestellar cores, the methanol emission appears ~1000 au away from the dust peak. The location of the methanol blob coincides with one of the filaments that have previously been reported in the literature. The excitation temperature of the gas inferred from methanol is (10 ± 2) K, while the H2 gas density (estimated from the detected CS 2–1 emission and previous CS 5–4 ALMA observations) is a factor >25 higher than the density in the surrounding environment (n(H2) ≥ 107 cm−3). Conclusions. Based on its compactness, low excitation temperature, and high gas density, we suggest that the methanol emission detected with NOEMA is (i) either a cold and dense shock-induced blob that formed recently (≤ a few hundred years) by infalling gas or (ii) a cold and dense fragment that may just have been formed as a result of the intense gas dynamics within the L1521F VeLLO system.

Funder

French National Research Agency in the framework of the Investissements d’Avenir program

European Research Council under the European Unions Horizon 2020 research

Spanish FEDER

State Research Agency

Russian Science Foundation

MINECO

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3