ORIGIN: Blind detection of faint emission line galaxies in MUSE datacubes

Author:

Mary DavidORCID,Bacon Roland,Conseil Simon,Piqueras Laure,Schutz Antony

Abstract

Context. One of the major science cases of the Multi Unit Spectroscopic Explorer (MUSE) integral field spectrograph is the detection of Lyman-alpha emitters at high redshifts. The on-going and planned deep fields observations will allow for one large sample of these sources. An efficient tool to perform blind detection of faint emitters in MUSE datacubes is a prerequisite of such an endeavor. Aims. Several line detection algorithms exist but their performance during the deepest MUSE exposures is hard to quantify, in particular with respect to their actual false detection rate, or purity. The aim of this work is to design and validate an algorithm that efficiently detects faint spatial-spectral emission signatures, while allowing for a stable false detection rate over the data cube and providing in the same time an automated and reliable estimation of the purity. Methods. The algorithm implements (i) a nuisance removal part based on a continuum subtraction combining a discrete cosine transform and an iterative principal component analysis, (ii) a detection part based on the local maxima of generalized likelihood ratio test statistics obtained for a set of spatial-spectral profiles of emission line emitters and (iii) a purity estimation part, where the proportion of true emission lines is estimated from the data itself: the distribution of the local maxima in the “noise only” configuration is estimated from that of the local minima. Results. Results on simulated data cubes providing ground truth show that the method reaches its aims in terms of purity and completeness. When applied to the deep 30 h exposure MUSE datacube in the Hubble Ultra Deep Field, the algorithms allows for the confirmed detection of 133 intermediate redshifts galaxies and 248 Lyα emitters, including 86 sources with no Hubble Space Telescope counterpart. Conclusions. The algorithm fulfills its aims in terms of detection power and reliability. It is consequently implemented as a Python package whose code and documentation are available on GitHub and readthedocs.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3