Episodic accretion constrained by a rich cluster of outflows

Author:

Nony T.ORCID,Motte F.,Louvet F.,Plunkett A.,Gusdorf A.,Fechtenbaum S.,Pouteau Y.,Lefloch B.,Bontemps S.,Molet J.,Robitaille J.-F.

Abstract

Context. The accretion history of protostars remains widely mysterious, even though it represents one of the best ways to understand the protostellar collapse that leads to the formation of stars. Aims. Molecular outflows, which are easier to detect than the direct accretion onto the prostellar embryo, are here used to characterize the protostellar accretion phase in W43-MM1. Methods. The W43-MM1 protocluster hosts a sufficient number of protostars to statistically investigate molecular outflows in a single, homogeneous region. We used the CO(2–1) and SiO(5–4) line datacubes, taken as part of an ALMA mosaic with a 2000 AU resolution, to search for protostellar outflows, evaluate the influence that the environment has on these outflows’ characteristics and put constraints on outflow variability in W43-MM1. Results. We discovered a rich cluster of 46 outflow lobes, driven by 27 protostars with masses of 1−100 M. The complex environment inside which these outflow lobes develop has a definite influence on their length, limiting the validity of using outflows’ dynamical timescale as a proxy of the ejection timescale in clouds with high dynamics and varying conditions. We performed a detailed study of Position–Velocity diagrams of outflows that revealed clear events of episodic ejection. The time variability of W43-MM1 outflows is a general trend and is more generally observed than in nearby, low- to intermediate-mass star-forming regions. The typical timescale found between two ejecta, ~500 yr, is consistent with that found in nearby protostars. Conclusions. If ejection episodicity reflects variability in the accretion process, either protostellar accretion is more variable, or episodicity is easier to detect in high-mass star-forming regions than in nearby clouds. The timescale found between accretion events could result from instabilities associated with bursts of inflowing gas arising from the close dynamical environment of high-mass star-forming cores.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference80 articles.

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3