Helium diffusion in magnetic stellar atmospheres of early B-type stars

Author:

Panei J. A.,Vallverdú R. E.,Cidale L. S.

Abstract

Context. The treatment of diffusion in stellar atmospheres of chemically peculiar stars is complex and difficult to model and has been treated mainly in A-type and late B-type stars. Vertical stratification is very often fixed from ad hoc chemical distribution profiles obtained by combining high-resolution spectropolarimetric observations and magnetic Doppler imaging techniques. Aims. Our goal is to improve the modelling of diffusion in magnetic B-type stars and reproduce non-homogeneous surface distributions in helium-peculiar stars. Moreover, we aim to predict the photospheric vertical stratification by self-consistently calculating atomic diffusion in the presence of magnetic fields. Methods. We solved the flow equations that describe gravitational settling along with thermal and chemical diffusion in stellar atmospheres under the influence of magnetic fields. We based the atomic diffusion on a previous treatment, which considers a mix of gases with various relative velocities. We took advantage of calculations from the literature on the stellar evolution of white dwarf stars. In this study, we neglected the effect of the radiative acceleration. Results. We described the helium abundance with latitude and depth in hot and intermediate spectral B-type stars considering diffusion processes with and without magnetic fields. We found variations in the number density of atoms between the magnetic pole and the equator that depend on the direction of the Lorentz force. This effect leads to under- or over-abundances in helium, giving the appearance of rings (equator) or spots (pole). However, the chemical profile found does not reproduce the strength of the helium lines. Conclusions. We concluded that the resulting chemical profiles computed with diffusion processes under the approximation of effective atoms describe the behaviour observed in the helium lines in He peculiar stars but it does not explain the observed strength. Other mechanisms in addition to diffusion, such as stellar winds, should be explored in detail.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3