A multiplicity study of transiting exoplanet host stars

Author:

Bohn A. J.ORCID,Southworth J.,Ginski C.,Kenworthy M. A.ORCID,Maxted P. F. L.ORCID,Evans D. F.

Abstract

Context. Many main-sequence stars are part of multiple systems. The effect of stellar multiplicity on planet formation and migration, however, is poorly understood. Aims. We study the multiplicity of stars hosting known transiting extra-solar planets to test competing theories on the formation mechanisms of hot Jupiters. Methods. We observed 45 exoplanet host stars using the infrared dual imaging spectrograph of the Spectro-Polarimetric High-Contrast Exoplanet Research (SPHERE) instrument at the Very Large Telescope to search for potential companions. For each identified candidate companion we determined the probability that it is gravitationally bound to its host by performing common proper motion checks and modelling of synthetic stellar populations around the host. In addition, we derived contrast limits as a function of angular separation to set upper limits on further companions in these systems. We converted the derived contrast into mass thresholds using AMES-Cond, AMES-Dusty, and BT-Settl models. Results. We detected new candidate companions around K2-38, WASP-72, WASP-80, WASP-87, WASP-88, WASP-108, WASP-118, WASP-120, WASP-122, WASP123, WASP-130, WASP-131, and WASP-137. The closest candidates were detected at separations of 0.′′124±0.′′007 and 0.′′189±0.′′003 around WASP-108 and WASP-131; the measured K-band contrasts indicate that these are stellar companions of 0.35 ± 0.02 M and 0.62−0.04+0.05 M⊙, respectively. Including the re-detection and confirmation of previously known companions in 13 other systems, we derived a multiplicity fraction of 55.4−9.4+5.9%. For the representative sub-sample of 40 hot Jupiter host stars among our targets, the derived multiplicity rate is 54.8−9.9+6.3%. Our data do not confirm any trend that systems with eccentric planetary companions are preferably part of multiple systems. On average, we reached a magnitude contrast of 8.5 ± 0.9 mag at an angular separation of 0.′′5. This allows us to exclude additional stellar companions with masses higher than 0.08M for almost all observed systems; around the closest and youngest systems, this sensitivity is achieved at physical separations as small as 10 au. Conclusions. Our study shows that SPHERE is an ideal instrument for detecting and characterising close companions to exoplanetary host stars. Although the second data release of the Gaia mission also provides useful constraints for some of the systems, the achieved sensitivity provided by the current data release of this mission is not good enough to measure parallaxes and proper motions for all detected candidates. For 14 identified companion candidates further astrometric epochs are required to confirm their common proper motion at 5σ significance.

Funder

European Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3