Mass-loss rate and local thermodynamic state of the KELT-9 b thermosphere from the hydrogen Balmer series

Author:

Wyttenbach A.ORCID,Mollière P.ORCID,Ehrenreich D.,Cegla H. M.,Bourrier V.,Lovis C.,Pino L.,Allart R.,Seidel J. V.,Hoeijmakers H. J.ORCID,Nielsen L. D.ORCID,Lavie B.,Pepe F.,Bonfils X.ORCID,Snellen I. A. G.ORCID

Abstract

KELT-9 b, the hottest known exoplanet, withTeq~ 4400 K, is the archetype of a new planet class known as ultra-hot Jupiters. These exoplanets are presumed to have an atmosphere dominated by neutral and ionized atomic species. In particular, Hαand HβBalmer lines have been detected in the KELT-9 b upper atmosphere, suggesting that hydrogen is filling the planetary Roche lobe and escaping from the planet. In this work, we detectedδScuti-type stellar pulsation (with a periodPpuls= 7.54 ± 0.12 h) and studied the Rossiter-McLaughlin effect (finding a spin-orbit angleλ= −85.01° ± 0.23°) prior to focussing on the Balmer lines (Hαto Hζ) in the optical transmission spectrum of KELT-9 b. Our HARPS-N data show significant absorption for Hαto Hδ. The precise line shapes of the Hα, Hβ, and Hγabsorptions allow us to put constraints on the thermospheric temperature. Moreover, the mass loss rate, and the excited hydrogen population of KELT-9 b are also constrained, thanks to a retrieval analysis performed with a new atmospheric model. We retrieved a thermospheric temperature ofT= 13 200−720+800K and a mass loss rate of= 1012.8±0.3g s−1when the atmosphere was assumed to be in hydrodynamical expansion and in local thermodynamic equilibrium (LTE). Since the thermospheres of hot Jupiters are not expected to be in LTE, we explored atmospheric structures with non-Boltzmann equilibrium for the population of the excited hydrogen. We do not find strong statistical evidence in favor of a departure from LTE. However, our non-LTE scenario suggests that a departure from the Boltzmann equilibrium may not be sufficient to explain the retrieved low number densities of the excited hydrogen. In non-LTE, Saha equilibrium departure via photo-ionization, is also likely to be necessary to explain the data.

Funder

SNSF

ERC

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3