The VLA-COSMOS 3 GHz Large Project: Average radio spectral energy distribution of active galactic nuclei

Author:

Tisanić K.ORCID,Smolčić V.,Imbrišak M.ORCID,Bondi M.ORCID,Zamorani G.ORCID,Ceraj L.,Vardoulaki E.,Delhaize J.

Abstract

Context. As the Square Kilometer Array (SKA) is expected to be operational in the next decade, investigations of the radio sky in the range of 100 MHz–10 GHz have become important for simulating SKA observations. In determining physical properties of galaxies from radio data, the radio spectral energy distribution (SED) is often assumed to be described by a simple power law, usually with a spectral index of 0.7 for all sources. Even though radio SEDs have been shown to exhibit deviations from this assumption, both in differing spectral indices and complex spectral shapes, it is often presumed that their individual differences can be canceled out in large samples. Aims. Since the average spectral index around 1 GHz (observed-frame) is important for determining physical properties of large samples of galaxies, we aim to test whether individual differences in the spectra of radio-identified active galactic nuclei align with the simple assumption of α = 0.7 and test the evolution of the parameters of the synchrotron aging model with redshift and radio luminosity. Methods. We use a sample of 744 radio-excess active galactic nuclei (RxAGN), defined as those that exhibit more than a 3σ radio luminosity excess with respect to the value expected only from the contribution from star formation, out to z ∼ 4. We constructed their average radio SED by combining Very Large Array (VLA) observations of the COSMOS field at 1.4 GHz and 3 GHz with Giant Meterwave Radio Telescope (GMRT) observations at 325 MHz and 610 MHz. To account for nondetections in the GMRT maps, we employed the survival analysis technique. We binned the RxAGN sample into luminosity- and redshift-complete subsamples. In each bin, we constrained the shape of the average radio SED by fitting a broken power-law model. Results. We find that the RxAGN sample can be described by a spectral index of α1 = 0.28 ± 0.03 below the break frequency νb = (4.1 ± 0.2) GHz and α2 = 1.16 ± 0.04 above it, while a simple power-law model, capturing fewer spectral features, yields a single spectral index of 0.64 ± 0.07. By binning in 1.4 GHz of radio luminosity and redshift, we find that the power-law spectral index is positively correlated with redshift and that the broken power-law spectral index above 4 GHz is positively correlated with both the redshift and source size. By selecting sources with sizes less than 1 kpc, we find a subsample of flat-spectrum sources, which can be described by a spectral index of α = 0.41 ± 0.07 and a broken power-law spectral index of α1 = 0.1 ± 0.1 (α2 = 0.55 ± 0.09) below (above) a break frequency of νb = (2.7 ± 0.5) GHz. Conclusions. We have constrained the radio SED for a sample of RxAGN in the COSMOS field using available VLA and GMRT data, corresponding to the rest-frame frequency range from ∼0.3 GHz to ∼10 GHz. We describe our derived average radio SED of RxAGN using power-law and broken power-law models, yielding a radio SED that steepens above ∼4 GHz.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3