Radiation spectra of warm and optically thick coronae in AGNs

Author:

Petrucci P.-O.ORCID,Gronkiewicz D.,Rozanska A.,Belmont R.,Bianchi S.,Czerny B.,Matt G.,Malzac J.,Middei R.,De Rosa A.,Ursini F.,Cappi M.

Abstract

A soft X-ray excess above the 2–10 keV power-law extrapolation is generally observed in the X-ray spectra of active galactic nuclei. The origin of this excess is still not well understood. Presently there are two competitive models: blurred ionized reflection and warm Comptonization. In the case of warm Comptonization, observations suggest a corona temperature in the range 0.1–2 keV and a corona optical depth of about 10–20. Moreover, radiative constraints from spectral fits with Comptonization models suggest that most of the accretion power should be released in the warm corona and the disk below is basically non-dissipative, radiating only the reprocessed emission from the corona. However, the true radiative properties of such a warm and optically thick plasma are not well known. For instance, the importance of the Comptonization process, the potential presence of strong absorption and/or emission features, and the spectral shape of the output spectrum have been studied only very recently. Here, we present simulations of warm and optically thick coronae using the TITAN radiative transfer code coupled with the NOAR Monte-Carlo code, the latter fully accounting for Compton scattering of continuum and lines. Illumination from above by hard X-ray emission and from below by an optically thick accretion disk are taken into account, as well as (uniform) internal heating. Our simulations show that for a large part of the parameter space, the warm corona with sufficient internal mechanical heating is dominated by Compton cooling and neither strong absorption nor emission lines are present in the outgoing spectra. In a smaller part of the parameter space, the calculated emission agrees with the spectral shape of the observed soft X-ray excess. Remarkably, this also corresponds to the conditions of radiative equilibrium of an extended warm corona covering a non-dissipative accretion disk almost entirely. These results confirm that warm Comptonization is a valuable model that can explain the origin of the soft X-ray excess.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference73 articles.

1. Abrassart A., & Dumont A. M. 2001, in X-ray Astronomy: Stellar Endpoints, AGN, and the Diffuse X-ray Background, eds. White N. E., Malaguti G., & Palumbo G. G. C., 599, 489

2. Examining the physical conditions of a warm corona in active galactic nuclei accretion discs

3. TRANSPORT OF LARGE-SCALE POLOIDAL FLUX IN BLACK HOLE ACCRETION

4. ACCRETION DISK DYNAMO AS THE TRIGGER FOR X-RAY BINARY STATE TRANSITIONS

5. CAIXA: a catalogue of AGN in the XMM-Newton archive

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3