The nature of the companion in the Wolf-Rayet system EZ Canis Majoris

Author:

Koenigsberger G.,Schmutz W.

Abstract

Context. EZ Canis Majoris is a classical Wolf-Rayet star whose binary nature has been debated for decades. It was recently modeled as an eccentric binary with a periodic brightening at periastron of the emission originating in a shock heated zone near the companion. Aims. The focus of this paper is to further test the binary model and to constrain the nature of the unseen close companion by searching for emission arising in the shock-heated region. Methods. We analyze over 400 high resolution International Ultraviolet Explorer spectra obtained between 1983 and 1995 and XMM-Newton observations obtained in 2010. The light curve and radial velocity (RV) variations were fit with the eccentric binary model and the orbital elements were constrained. Results. We find RV variations in the primary emission lines with a semi-amplitude K1 ∼ 30 km s−1 in 1992 and 1995, and a second set of emissions with an anti-phase RV curve with K2 ∼ 150 km s−1. The simultaneous model fit to the RVs and the light curve yields the orbital elements for each epoch. Adopting a Wolf-Rayet mass M1 ∼ 20 M leads to M2 ∼ 3−5 M, which implies that the companion could be a late B-type star. The eccentric (e = 0.1) binary model also explains the hard X-ray light curve obtained by XMM-Newton and the fit to these data indicates that the duration of maximum is shorter than the typical exposure times. Conclusions: The anti-phase RV variations of two emission components and the simultaneous fit to the RVs and the light curve are concrete evidence in favor of the binary nature of EZ Canis Majoris. The assumption that the emission from the shock-heated region closely traces the orbit of the companion is less certain, although it is feasible because the companion is significantly heated by the WR radiation field and impacted by the WR wind.

Funder

Consejo Nacional de Ciencia y Tecnología

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. S 308 and other X-ray emitting bubbles around Wolf–Rayet stars;Astronomy & Astrophysics;2024-01

2. X-ray Emission of Massive Stars and Their Winds;Handbook of X-ray and Gamma-ray Astrophysics;2024

3. Using CHIRON spectroscopy to test the hypothesis of a precessing orbit for the WN4 star EZ CMa;Monthly Notices of the Royal Astronomical Society;2023-10-26

4. Simulated non-thermal emission of the supernova remnant G1.9 + 0.3;Monthly Notices of the Royal Astronomical Society;2023-10-21

5. The sculpting of rectangular and jet-like morphologies in supernova remnants by anisotropic equatorially confined progenitor stellar winds;Monthly Notices of the Royal Astronomical Society;2023-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3