Analysis of putative exoplanetary signatures found in light curves of two sdBV stars observed by Kepler

Author:

Blokesz A.,Krzesinski J.ORCID,Kedziora-Chudczer L.

Abstract

Context. We investigate the validity of the claim that invokes two extreme exoplanetary system candidates around the pulsating B-type subdwarfs KIC 10001893 and KIC 5807616 from the primary Kepler field. Aims. Our goal was to find characteristics and the source of weak signals that are observed in these subdwarf light curves. Methods. To achieve this, we analyzed short- and long-cadence Kepler data of the two stars by means of a Fourier transform and compared the results to Fourier transforms of simulated light curves to which we added exoplanetary signals. The long-cadence data of KIC 10001893 were extracted from CCD images of a nearby star, KIC 10001898, using a point spread function reduction technique. Results. It appears that the amplitudes of the Fourier transform signals that were found in the low-frequency region depend on the methods that are used to extract and prepare Kepler data. We demonstrate that using a comparison star for space telescope data can significantly reduce artifacts. Our simulations also show that a weak signal of constant amplitude and frequency, added to a stellar light curve, conserves its frequency in Fourier transform amplitude spectra to within 0.03 μHz. Conclusions. Based on our simulations, we conclude that the two low-frequency Fourier transform signals found in KIC 5807616 are likely the combined frequencies of the lower amplitude pulsating modes of the star. In the case of KIC 10001893, the signal amplitudes that are visible in the light curve depend on the data set and reduction methods. The strongest signal decreases significantly in amplitude when KIC 10001898 is used as a comparison star. Finally, we recommend that the signal detection threshold is increased to 5σ (or higher) for a Fourier transform analysis of Kepler data in low-frequency regions.

Funder

National Science Centre, Poland

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3