Eruption of a multi-flux-rope system in solar active region 12673 leading to the two largest flares in Solar Cycle 24

Author:

Hou Y. J.ORCID,Zhang J.,Li T.,Yang S. H.,Li X. H.

Abstract

Context. Solar active region (AR) 12673 in 2017 September produced the two largest flares in Solar Cycle 24: the X9.3 flare on September 6 and the X8.2 flare on September 10. Aims. We attempt to investigate the evolutions of the two large flares and their associated complex magnetic system in detail. Methods. Combining observations from the Solar Dynamics Observatory and results of nonlinear force-free field (NLFFF) modeling, we identify various magnetic structures in the AR core region and examine the evolution of these structures during the flares. Results. Aided by the NLFFF modeling, we identify a double-decker flux rope configuration above the polarity inversion line (PIL) in the AR core region. The north ends of these two flux ropes were rooted in a negative- polarity magnetic patch, which began to move along the PIL and rotate anticlockwise before the X9.3 flare on September 6. The strong shearing motion and rotation contributed to the destabilization of the two magnetic flux ropes, of which the upper one subsequently erupted upward due to the kink-instability. Then another two sets of twisted loop bundles beside these ropes were disturbed and successively erupted within five minutes like a chain reaction. Similarly, multiple ejecta components were detected as consecutively erupting during the X8.2 flare occurring in the same AR on September 10. We examine the evolution of the AR magnetic fields from September 3 to 6 and find that five dipoles emerged successively at the east of the main sunspot. The interactions between these dipoles took place continuously, accompanied by magnetic flux cancellations and strong shearing motions. Conclusions. In AR 12673, significant flux emergence and successive interactions between the different emerging dipoles resulted in a complex magnetic system, accompanied by the formations of multiple flux ropes and twisted loop bundles. We propose that the eruptions of a multi-flux-rope system resulted in the two largest flares in Solar Cycle 24.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3