Recollimation shocks and radiative losses in extragalactic relativistic jets

Author:

Bodo G.ORCID,Tavecchio F.

Abstract

We present the results of state-of-the-art simulations of recollimation shocks induced by the interaction of a relativistic jet with an external medium, including the effect of radiative losses of the shocked gas. Our simulations confirm that – as suggested by earlier semi-analytical models – the post-shock pressure loss induced by radiative losses may lead to a stationary equilibrium state characterized by a very strong focusing of the flow, with the formation of quite narrow nozzles, with cross-sectional radii as small as 10-3 times the length scale of the jet. We also study the time-dependent evolution of the jet structure induced by a density perturbation injected at the flow base. The set-up and the results of the simulations are particularly relevant for the interpretation of the observed rapid variability of the γ-ray emission associated to flat spectrum radio quasars. In particular, the combined effects of jet focusing and Doppler beaming on the observed radiation make it possible to explain the sub-hour flaring events such as that observed in the flat specrum radio quasar PKS 1222+216 by MAGIC.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gamma-ray Emission and Variability Processes in High-Energy-Peaked BL Lacertae Objects;Universe;2023-07-24

2. The complex interplay of AGN jet-inflated bubbles and the intracluster medium;Monthly Notices of the Royal Astronomical Society;2023-03-23

3. Active galactic nuclei jets simulated with smoothed particle hydrodynamics;Monthly Notices of the Royal Astronomical Society;2023-02-10

4. Extreme TeV BL Lacs: a self-consistent stochastic acceleration model;Monthly Notices of the Royal Astronomical Society;2022-10-04

5. Extreme blazars: the result of unstable recollimated jets?;Monthly Notices of the Royal Astronomical Society: Letters;2022-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3