SOPHIE velocimetry of Kepler transit candidates

Author:

Almenara J. M.,Díaz R. F.,Hébrard G.,Mardling R.,Damiani C.,Santerne A.,Bouchy F.,Barros S. C. C.,Boisse I.,Bonfils X.,Bonomo A. S.,Courcol B.,Demangeon O.,Deleuil M.,Rey J.,Udry S.,Wilson P. A.

Abstract

Kepler-419 is a planetary system discovered by the Kepler photometry which is known to harbour two massive giant planets: an inner 3 MJ transiting planet with a 69.8-day period, highly eccentric orbit, and an outer 7.5 MJ non-transiting planet predicted from the transit-timing variations (TTVs) of the inner planet b to have a 675-day period, moderately eccentric orbit. Here we present new radial velocity (RV) measurements secured over more than two years with the SOPHIE spectrograph, where both planets are clearly detected. The RV data is modelled together with the Kepler photometry using a photodynamical model. The inclusion of velocity information breaks the MR−3 degeneracy inherent in timing data alone, allowing us to measure the absolute stellar and planetary radii and masses. With uncertainties of 12 and 13% for the stellar and inner planet radii, and 35, 24, and 35% for the masses of the star, planet b, and planet c, respectively, these measurements are the most precise to date for a single host star system using this technique. The transiting planet mass is determined at better precision than the star mass. This shows that modelling the radial velocities and the light curve together in systems of dynamically interacting planets provides a way of characterising both the star and the planets without being limited by knowledge of the star. On the other hand, the period ratio and eccentricities place the Kepler-419 system in a sweet spot; had around twice as many transits been observed, the mass of the transiting planet could have been measured using its own TTVs. Finally, the origin of the Kepler-419 system is discussed. We show that the system is near a coplanar high-eccentricity secular fixed point, related to the alignment of the orbits, which has prevented the inner orbit from circularising. For most other relative apsidal orientations, planet b’s orbit would be circular with a semi-major axis of 0.03 au. This suggests a mechanism for forming hot Jupiters in multiplanetary systems without the need of high mutual inclinations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3