The chemistry of disks around T Tauri and Herbig Ae/Be stars

Author:

Agúndez Marcelino,Roueff Evelyne,Le Petit Franck,Le Bourlot Jacques

Abstract

Context. Infrared and (sub-)millimeter observations of disks around T Tauri and Herbig Ae/Be stars point to a chemical differentiation, with a lower detection rate of molecules in disks around hotter stars. Aims. We aim to investigate the underlying causes of the chemical differentiation indicated by observations and perform a comparative study of the chemistry of T Tauri and Herbig Ae/Be disks. This is one of the first studies to compare the chemistry in the outer regions of these two types of disk. Methods. We developed a model to compute the chemical composition of a generic protoplanetary disk, with particular attention to the photochemistry, and applied it to a T Tauri and a Herbig Ae/Be disk. We compiled cross sections and computed photodissociation and photoionization rates at each location in the disk by solving the far-ultraviolet (FUV) radiative transfer in a 1+1D approach using the Meudon PDR code and adopting observed stellar spectra. Results. The warmer disk temperatures and higher ultraviolet flux of Herbig stars compared to T Tauri stars induce some differences in the disk chemistry. In the hot inner regions, H2O, and simple organic molecules like C2H2, HCN, and CH4 are predicted to be very abundant in T Tauri disks and even more in Herbig Ae/Be disks, in contrast with infrared observations that find a much lower detection rate of water and simple organics toward disks around hotter stars. In the outer regions, the model indicates that the molecules typically observed in disks, like HCN, CN, C2H, H2CO, CS, SO, and HCO+, do not have drastic abundance differences between T Tauri and Herbig Ae disks. Some species produced under the action of photochemistry, like C2H and CN, are predicted to have slightly lower abundances around Herbig Ae stars due to a narrowing of the photochemically active layer. Observations indeed suggest that these radicals are somewhat less abundant in Herbig Ae disks, although in any case, the inferred abundance differences are small, of a factor of a few at most. A clear chemical differentiation between both types of disks concerns ices. Owing to the warmer temperatures of Herbig Ae disks, one expects snow lines lying farther away from the star and a lower mass of ices compared to T Tauri disks. Conclusions. The global chemical behavior of T Tauri and Herbig Ae/Be disks is quite similar. The main differences are driven by the warmer temperatures of the latter, which result in a larger reservoir or water and simple organics in the inner regions and a lower mass of ices in the outer disk.

Funder

FP7 People: Marie-Curie Actions

European Research Council

Ministerio de Economía y Competitividad

Centre National de la Recherche Scientifique

Centre National d’Etudes Spatiales

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3