Spectral models for binary products: Unifying subdwarfs and Wolf-Rayet stars as a sequence of stripped-envelope stars

Author:

Götberg Y.,de Mink S. E.,Groh J. H.,Kupfer T.,Crowther P. A.,Zapartas E.,Renzo M.

Abstract

Stars stripped of their hydrogen-rich envelope through interaction with a binary companion are generally not considered when accounting for ionizing radiation from stellar populations, despite the expectation that stripped stars emit hard ionizing radiation, form frequently, and live 10–100 times longer than single massive stars. We compute the first grid of evolutionary and spectral models specially made for stars stripped in binaries for a range of progenitor masses (2–20 M) and metallicities ranging from solar to values representative for pop II stars. For stripped stars with masses in the range 0.3–7 M, we find consistently high effective temperatures (20 000–100 000 K, increasing with mass), small radii (0.2–1 R), and high bolometric luminosities, comparable to that of their progenitor before stripping. The spectra show a continuous sequence that naturally bridges subdwarf-type stars at the low-mass end and Wolf-Rayet-like spectra at the high-mass end. For intermediate masses we find hybrid spectral classes showing a mixture of absorption and emission lines. These appear for stars with mass-loss rates of 10−8−10−6 M yr−1, which have semi-transparent atmospheres. At low metallicity, substantial hydrogen-rich layers are left at the surface and we predict spectra that resemble O-type stars instead. We obtain spectra undistinguishable from subdwarfs for stripped stars with masses up to 1.7 M, which questions whether the widely adopted canonical value of 0.47 M is uniformly valid. Only a handful of stripped stars of intermediate mass have currently been identified observationally. Increasing this sample will provide necessary tests for the physics of interaction, internal mixing, and stellar winds. We use our model spectra to investigate the feasibility to detect stripped stars next to an optically bright companion and recommend systematic searches for their UV excess and possible emission lines, most notably HeII λ4686 in the optical and HeII λ1640 in the UV. Our models are publicly available for further investigations or inclusion in spectral synthesis simulations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3