A broadband spectral analysis of 4U 1702-429 using XMM-Newton and BeppoSAX data

Author:

Mazzola S. M.,Iaria R.,Di Salvo T.,Del Santo M.,Sanna A.,Gambino A. F.,Riggio A.,Segreto A.,Burderi L.,Santangelo A.,D’Amico N.

Abstract

Context. Most of the X-ray binary systems containing neutron stars classified as Atoll sources show two different spectral states, referred to as soft and hard. Moreover, a large number of these systems show a reflection component relativistically smeared in their spectra, which provides information on the innermost region of the system. Aims. Our aim is to investigate the poorly studied broadband spectrum of the low-mass X-ray binary system 4U 1702-429, which was recently analysed combining XMM-Newton and INTEGRAL data. The peculiar value of the reflection fraction brought us to analyse further broadband spectra of 4U 1702-429. Methods. We re-analysed the spectrum of the XMM-Newton/INTEGRAL observation of 4U 1702-429 in the 0.3–60 keV energy range and we extracted three 0.1–100 keV spectra of the source analysing three observations collected with the BeppoSAX satellite. Results. We find that the XMM-Newton/INTEGRAL spectrum is well fitted using a model composed of a disc blackbody plus a Comptonised component and a smeared reflection component. We used the same spectral model for the BeppoSAX spectra, finding that the addition of a smeared reflection component is statistically significant. The best-fit values of the parameters are compatible to each other for the BeppoSAX spectra. We find that the reflection fraction is 0.05−0.01+0.3 for the XMM-Newton/INTEGRAL spectrum and between 0.15 and 0.4 for the BeppoSAX ones. Conclusions. The relative reflection fraction and the ionisation parameter are incompatible between the XMM-Newton/INTEGRAL and the BeppoSAX observations and the characteristics of the Comptonising corona suggest that the source was in a soft state in the former observation and in a hard state in the latter.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3