W 50 and SS 433

Author:

Bowler Michael G.,Keppens Rony

Abstract

Context. The Galactic microquasar SS 433 launches oppositely directed jets at speeds approximately a quarter of the speed of light. These appear to have punched through and beyond the supposed supernova remnant shell W 50. The problems with this interpretation are: (i) the precessing jets have somehow been collimated before reaching the shell; (ii) without deceleration, only recently launched jets would have reached no further; and (iii) certain features in the lobes are moving slowly or are stationary. Aims. Hydrodynamic computations have demonstrated that for at least one set of parameters describing the ambient medium, jets that diverge and precess are both decelerated and collimated; the conformation of W 50 could then have been sculpted by the jets of SS 433. However, the parameters adopted for density and pressure in these computations are not consistent with observations of jets at a few years old; nor do they represent conditions within a supernova remnant. Our aim is to investigate whether the computations already performed can be scaled to a realistic W 50. Methods. We find simple and physically based scaling relations. The distance to collimation varies inversely with the square root of the pressure of the ambient medium and the speed with which the head of a collimated jet propagates scales with the square root of the temperature. We extrapolate the results of the hydrodynamic computations to lower densities and pressures. Results. The jets of SS 433, launched into an ambient medium of pressure ~10−9 erg cm−3 and temperature ~108 K, within a supernova remnant, could be responsible for the characteristics of W 50. The precessing jets are collimated within ~10 pc and the head of the resulting cylindrical jet propagates slowly. Conclusions. The problems of relating W 50 to SS 433 may now be solved.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3