Evolution and wave-like properties of the average solar supergranule

Author:

Langfellner J.ORCID,Birch A. C.,Gizon L.

Abstract

Context. Solar supergranulation presents us with many mysteries. For example, previous studies in spectral space have found that supergranulation has wave-like properties. Aims. Here we study, in real space, the wave-like evolution of the average supergranule over a range of spatial scales (from 10 to 80 Mm). We complement this by characterizing the evolution of the associated network magnetic field. Methods. We used one year of data from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory to measure horizontal near-surface flows near the solar equator by applying time-distance helioseismology (TD) on Dopplergrams and granulation tracking (LCT) on intensity images. The average supergranule outflow (or inflow) was constructed by averaging over 10 000 individual outflows (or inflows). The contemporaneous evolution of the magnetic field was studied with HMI line-of-sight observations. Results. We confirm and extend previous measurements of the supergranular wave dispersion relation to angular wavenumbers in the range 50 < kR < 270. We find a plateau for kR > 120. In real space, larger supergranules undergo oscillations with longer periods and lifetimes than smaller cells. We find excellent agreement between TD and LCT and obtain wave properties that are independent of the tracking rate. The observed network magnetic field follows the oscillations of the supergranular flows with a six-hour time lag. This behavior can be explained by computing the motions of corks carried by the supergranular flows. Conclusions. Signatures of supergranular waves in surface horizontal flows near the solar equator can be observed in real space. These oscillatory flows control the evolution of the network magnetic field, in particular they explain the recently discovered east-west anisotropy of the magnetic field around the average supergranule. Background flow measurements that we obtain from Doppler frequency shifts do not favor shallow models of supergranulation.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3