Parsec-scale jets driven by high-mass young stellar objects

Author:

Fedriani R.ORCID,Caratti o Garatti A.,Coffey D.,Garcia Lopez R.,Kraus S.,Weigelt G.,Stecklum B.,Ray T. P.,Walmsley C. M.

Abstract

Context. Protostellar jets in high-mass young stellar objects (HMYSOs) play a key role in the understanding of star formation and provide us with an excellent tool to study fundamental properties of HMYSOs. Aims. We aim at studying the physical and kinematic properties of the near-infrared (NIR) jet of IRAS 13481-6124 from au to parsec scales. Methods. Our study includes NIR data from the Very Large Telescope instruments SINFONI, CRIRES, and ISAAC. Information about the source and its immediate environment is retrieved with SINFONI. The technique of spectro-astrometry is performed with CRIRES to study the jet on au scales. The parsec-scale jet and its kinematic and dynamic properties are investigated using ISAAC. Results. The SINFONI spectra in H and K bands are rich in emission lines that are mainly associated with ejection and accretion processes. Spectro-astrometry is applied to the Brγ line, and for the first time, to the Brα line, revealing their jet origin with milliarcsecond-scale photocentre displacements (11−15 au). This allows us to constrain the kinematics of the au-scale jet and to derive its position angle (~216°). ISAAC spectroscopy reveals H2 emission along the parsec-scale jet, which allows us to infer kinematic and dynamic properties of the NIR parsec-scale jet. The mass-loss rate inferred for the NIR jet is ejec ~ 10−4 M yr−1 and the thrust is ~ 10−2 M yr−1 km s−1, which is roughly constant for the formation history of the young star. A tentative estimate of the ionisation fraction is derived for the massive jet by comparing the radio and NIR mass-loss rates. An ionisation fraction ≲8% is obtained, which means that the bulk of the ejecta is traced by the NIR jet and that the radio jet only delineates a small portion of it.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3