The shape of convective core overshooting from gravity-mode period spacings

Author:

Pedersen M. G.ORCID,Aerts C.,Pápics P. I.,Rogers T. M.

Abstract

Context. The evolution of stars born with a convective core is highly dependent on the efficiency and extent of near core mixing processes, which effectively increases both the core mass and main-sequence lifetime. These mixing processes remain poorly constrained and therefore result in large uncertainties in the stellar structure and evolution models of such stars. Aims. We investigate to what extent gravity-mode period spacings in slowly pulsating B-type stars observed by the Kepler mission can be used to constrain both the shape and extent of convective core overshoot and additional mixing in the radiative envelope. Methods. We compute grids of 1D stellar structure and evolution models for two different shapes of convective core overshooting and three shapes of radiative envelope mixing. The models in these grids are compared to a set of benchmark models to evaluate their capability of mimicking the dipole prograde g-modes of the benchmark models. Results. Through our model comparisons we find that at a central hydrogen content of Xc = 0.5, dipole prograde g-modes in the period range 0.8−3 d are capable of differentiating between step and exponential diffusive overshooting. This ability disappears towards the terminal age main sequence at X c = 0.1. Furthermore, the g-modes behave the same for the three different shapes of radiative envelope mixing considered. However, a constant envelope mixing requires a diffusion coefficient near the convective core five times higher than chemical mixing from internal gravity waves to obtain a surface nitrogen excess of ~ 0.5 dex within the main-sequence lifetime. Conclusions. Within the estimated frequency errors of the Kepler mission, the ability of g-modes to distinguish between step and exponential diffusive overshooting depends on the evolutionary stage. Combining information from the average period spacing and observed surface abundances, notably nitrogen, could potentially be used to constrain the shape of mixing in the radiative envelope of massive stars.

Funder

The European Research Counsil

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3