Circumstellar environment of the M-type AGB star R Doradus

Author:

De Beck E.ORCID,Olofsson H.ORCID

Abstract

Context. Our current insights into the circumstellar chemistry of asymptotic giant branch (AGB) stars are largely based on studies of carbon-rich stars and stars with high mass-loss rates. Aims. In order to expand the current molecular inventory of evolved stars we present a spectral scan of the nearby, oxygen-rich star R Dor, a star with a low mass-loss rate (~2 × 10−7 M yr−1). Methods. We carried out a spectral scan in the frequency ranges 159.0–321.5 GHz and 338.5–368.5 GHz (wavelength range 0.8–1.9 mm) using the SEPIA/Band-5 and SHeFI instruments on the APEX telescope and we compare it to previous surveys, including one of the oxygen-rich AGB star IK Tau, which has a high mass-loss rate (~5 ×10−6 M yr−1). Results. The spectrum of R Dor is dominated by emission lines of SO2 and the different isotopologues of SiO. We also detect CO, H2O, HCN, CN, PO, PN, SO, and tentatively TiO2, AlO, and NaCl. Sixteen out of approximately 320 spectral features remain unidentified. Among these is a strong but previously unknown maser at 354.2 GHz, which we suggest could pertain to H2SiO, silanone. With the exception of one, none of these unidentified lines are found in a similarly sensitive survey of IK Tau performed with the IRAM 30 m telescope. We present radiative transfer models for five isotopologues of SiO (28SiO, 29SiO, 30SiO, Si17O, Si18O), providing constraints on their fractional abundance and radial extent. We derive isotopic ratios for C, O, Si, and S and estimate that, based on our results for 17O/18O, R Dor likely had an initial mass in the range 1.3–1.6 M, in agreement with earlier findings based on models of H2O line emission. From the presence of spectral features recurring in many of the measured thermal and maser emission lines we tentatively identify up to five kinematical components in the outflow of R Dor, indicating deviations from a smooth, spherical wind.

Funder

Swedish National Space Board

Vetenskapsrådet

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3