Spectral variation of suprathermal protons associated with stream interaction regions: STEREO A/PLASTIC observations

Author:

Yu J.,Berger L.,Drews C.,Wimmer-Schweingruber R.,Taut A.

Abstract

Context. The observation of power-law spectra of suprathermal particles is typically associated with the occurrence of stream interaction regions (SIRs), indicating that these particles are accelerated close to the observer. However, recent observations have identified the existence of sunwards streaming particles at low suprathermal energies following SIRs. In addition, the observational evidence for turnover spectra in the low suprathermal energies has also been presented, suggesting that these particles might be accelerated at remote shocks and travel back to the Sun along the interplanetary magnetic field lines. Aims. We investigate the spectral evolution and variation of suprathermal protons from SIR to SIR as the observer moves from inside the compression regions of SIRs to the outside undisturbed solar wind regions away from the reverse shocks. Methods. The spectral analysis in the range from solar wind to suprathermal energies was based on proton data, which are obtained by the Plasma and Suprathermal Ion Composition instrument (PLASTIC) on the Solar Terrestrial Relations Observatory mission (STEREO). Results. All spectra in the compressed fast wind regions (F′ regions) of twelve SIRs exhibit power-law suprathermal tails. Six of them show clear turnover spectra at velocities below 2500 km s−1 in the undisturbed fast solar wind regions (F regions) following the compression regions, while the remaining six events exhibit continuous power-law spectra. Overall, the spectra at velocities higher than 2500 km s−1 harden in the F regions, consistent with previous observations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3