Structure of X-ray emitting jets close to the launching site: from embedded to disk-bearing sources

Author:

Ustamujic S.,Orlando S.,Bonito R.,Miceli M.,Gómez de Castro A. I.

Abstract

Context. Several observations of stellar jets show evidence of X-ray emitting shocks close to the launching site. In some cases, including young stellar objects (YSOs) at different stages of evolution, the shocked features appear to be stationary. We study two cases, both located in the Taurus star-forming region. HH 154, the jet originating from the embedded binary Class 0/I protostar IRS 5, and the jet associated with DG Tau, a more evolved Class II disk-bearing source or classical T Tauri star (CTTS). Aims. We investigate the effect of perturbations in X-ray emitting stationary shocks in stellar jets and the stability and detectability in X-rays of these shocks, and we explore the differences in jets from Class 0 to Class II sources. Methods. We performed a set of 2.5D magnetohydrodynamic numerical simulations that model supersonic jets ramming into a magnetized medium. The jet is formed of two components: a continuously driven component that forms a quasi-stationary shock at the base of the jet and a pulsed component consisting of blobs perturbing the shock. We explored different parameters for the two components. We studied two cases: HH 154, a light jet (less dense than the ambient medium), and a heavy jet (denser than the ambient medium) associated with DG Tau. We synthesized the count rate from the simulations and compared these data with available Chandra observations. Results. Our model is able to reproduce the observed jet properties at different evolutionary phases (in particular, for HH 154 and DG Tau) and can explain the formation of X-ray emitting quasi-stationary shocks observed at the base of jets in a natural way. The jet is collimated by the magnetic field forming a quasi-stationary shock at the base which emits in X-rays even when perturbations formed by a train of blobs are present. We found similar collimation mechanisms dominating in both heavy and light jets. Conclusions. We derived the physical parameters that can give rise to X-ray emission consistent with observations of HH 154 and DG Tau. We have also performed a wide exploration of the parameter space characterizing the model; this can be a useful tool to study and diagnose the physical properties of YSO jets over a broad range of physical conditions, from embedded to disk-bearing sources. We show that luminosity does not change significantly in variable jet models for the range of parameters explored. Finally, we provide an estimation of the maximum perturbations that can be present in HH 154 and DG Tau taking into account the available X-ray observations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3