Solar barycentric dynamics from a new solar-planetary ephemeris

Author:

Cionco Rodolfo G.,Pavlov Dmitry A.

Abstract

Aims. The barycentric dynamics of the Sun has increasingly been attracting the attention of researchers from several fields, due to the idea that interactions between the Sun’s orbital motion and solar internal functioning could be possible. Existing high-precision ephemerides that have been used for that purpose do not include the effects of trans-Neptunian bodies, which cause a significant offset in the definition of the solar system’s barycentre. In addition, the majority of the dynamical parameters of the solar barycentric orbit are not routinely calculated according to these ephemerides or are not publicly available. Methods. We developed a special version of the IAA RAS lunar–solar–planetary ephemerides, EPM2017H, to cover the whole Holocene and 1 kyr into the future. We studied the basic and derived (e.g., orbital torque) barycentric dynamical quantities of the Sun for that time span. A harmonic analysis (which involves an application of VSOP2013 and TOP2013 planetary theories) was performed on these parameters to obtain a physics-based interpretation of the main periodicities present in the solar barycentric movement. Results. We present a high-precision solar barycentric orbit and derived dynamical parameters (using the solar system’s invariable plane as the reference plane), widely accessible for the whole Holocene and 1 kyr in the future. Several particularities and barycentric phenomena are presented and explained on dynamical bases. A comparison with the Jet Propulsion Laboratory DE431 ephemeris, whose main differences arise from the modelling of trans-Neptunian bodies, shows significant discrepancies in several parameters (i.e., not only limited to angular elements) related to the solar barycentric dynamics. In addition, we identify the main periodicities of the Sun’s barycentric movement and the main giant planets perturbations related to them.

Funder

UNIVERSIDAD TECNOLOGICA NACIONAL, ARGENTINA

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3