Inversions of synthetic umbral flashes: a selection of wavelength sampling

Author:

Felipe T.ORCID,Esteban Pozuelo S.

Abstract

Context. Imaging spectrographs are popular instruments used to obtain solar data. They record quasi-monochromatic images at selected wavelength positions. By scanning the spectral range of the line, it is possible to obtain bidimensional maps of the field-of-view with a moderate spectral resolution. Aims. In this work, we evaluate the quality of spectropolarimetric inversions obtained from various wavelength samplings during umbral flashes. Methods. We computed numerical simulations of nonlinear wave propagation in a sunspot and constructed synthetic Stokes profiles in the Ca II 8542 Å line during an umbral flash using the NLTE code NICOLE. The spectral resolution of the Stokes profiles was downgraded to various cases with differences in the wavelength coverage. A large set of wavelength samplings was analyzed and the performance of the inversions was evaluated by comparing the inferred chromospheric temperature, velocity, and magnetic field with the actual values at the chromosphere of the numerical simulation. Results. The errors in the inverted results depend to a large extent on the location of the wavelength points across the profile of the line. The inferred magnetic field improves with the increase of the spectral resolution. In the case of velocity and temperature, low spectral resolution data produce a match of the inverted atmospheres with the actual values comparable to wavelength samplings with finer resolution, while providing a higher temporal cadence in the data acquisition. Conclusions. We validated the NLTE inversions of spectropolarimetric data from the Ca II 8542 Å during umbral flashes, during which the atmosphere undergoes sudden dramatic changes due to the propagation of a shock wave. Our results favor the use of fine spectral resolution for analyses that focus on the inference of the magnetic field, whereas the estimation of temperature and velocity fluctuations can be performed with lower spectral resolution.

Funder

Ministerio de Ciencia, Innovación y Universidades

European Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Designing wavelength sampling for Fabry–Pérot observations;Astronomy & Astrophysics;2023-05

2. Waves in the lower solar atmosphere: the dawn of next-generation solar telescopes;Living Reviews in Solar Physics;2023-01-19

3. Limitations of the Ca ii 8542 Å Line for the Determination of Magnetic Field Oscillations;The Astrophysical Journal;2021-09-01

4. Downflowing umbral flashes as evidence of standing waves in sunspot umbrae;Astronomy & Astrophysics;2021-01

5. On the effect of oscillatory phenomena on Stokes inversion results;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2020-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3