The ALMA-PILS survey: inventory of complex organic molecules towards IRAS 16293–2422 A

Author:

Manigand S.ORCID,Jørgensen J. K.ORCID,Calcutt H.ORCID,Müller H. S. P.ORCID,Ligterink N. F. W.ORCID,Coutens A.ORCID,Drozdovskaya M. N.ORCID,van Dishoeck E. F.,Wampfler S. F.ORCID

Abstract

Context.Complex organic molecules are detected in many sources in the warm inner regions of envelopes surrounding deeply embedded protostars. Exactly how these species form remains an open question.Aims.This study aims to constrain the formation of complex organic molecules through comparisons of their abundances towards the Class 0 protostellar binary IRAS 16293–2422.Methods.We utilised observations from the ALMA Protostellar Interferometric Line Survey of IRAS 16293–2422. The species identification and the rotational temperature and column density estimation were derived by fitting the extracted spectra towards IRAS 16293–2422 A and IRAS 16293–2422 B with synthetic spectra. The majority of the work in this paper pertains to the analysis of IRAS 16293–2422 A for a comparison with the results from the other binary component, which have already been published.Results.We detect 15 different complex species, as well as 16 isotopologues towards the most luminous companion protostar IRAS 16293–2422 A. Tentative detections of an additional 11 isotopologues are reported. We also searched for and report on the first detections of methoxymethanol (CH3OCH2OH) and trans-ethyl methyl ether (t-C2H5OCH3) towards IRAS 16293–2422 B and the follow-up detection of deuterated isotopologues of acetaldehyde (CH2DCHO and CH3CDO). Twenty-four lines of doubly-deuterated methanol (CHD2OH) are also identified.Conclusions.The comparison between the two protostars of the binary system shows significant differences in abundance for some of the species, which are partially correlated to their spatial distribution. The spatial distribution is consistent with the sublimation temperature of the species; those with higher expected sublimation temperatures are located in the most compact region of the hot corino towards IRAS 16293–2422 A. This spatial differentiation is not resolved in IRAS 16293–2422 B and will require observations at a higher angular resolution. In parallel, the list of identified CHD2OH lines shows the need of accurate spectroscopic data including their line strength.

Funder

H2020 European Research Council

European Research Council

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Danmarks Grundforskningsfond

IAU Gruber Foundation

Center for Space Habitability

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3