ALMA observations of water deuteration: a physical diagnostic of the formation of protostars

Author:

Jensen S. S.ORCID,Jørgensen J. K.ORCID,Kristensen L. E.ORCID,Furuya K.ORCID,Coutens A.ORCID,van Dishoeck E. F.,Harsono D.ORCID,Persson M. V.

Abstract

Context. How water is delivered to planetary systems is a central question in astrochemistry. The deuterium fractionation of water can serve as a tracer for the chemical and physical evolution of water during star formation and can constrain the origin of water in Solar System bodies. Aims. The aim is to determine the HDO/H2O ratio in the inner warm gas toward three low-mass Class 0 protostars selected to be in isolated cores, i.e., not associated with any cloud complexes. Previous sources for which the HDO/H2O ratio have been established were all part of larger star-forming complexes. Determining the HDO/H2O ratio toward three isolated protostars allows comparison of the water chemistry in isolated and clustered regions to determine the influence of local cloud environment. Methods. We present ALMA Band 6 observations of the HDO 31,2–22,1 and 21,1–21,2 transitions at 225.897 GHz and 241.562 GHz along with the first ALMA Band 5 observations of the H218O 31,3–22,0 transition at 203.407 GHz. The high angular resolution observations (0′′.3–1′′.3) allow the study of the inner warm envelope gas. Model-independent estimates for the HDO/H2O ratios are obtained and compared with previous determinations of the HDO/H2O ratio in the warm gas toward low-mass protostars. Results. We successfully detect the targeted water transitions toward the three sources with signal-to-noise ratio (S/N) > 5. We determine the HDO/H2O ratio toward L483, B335 and BHR71–IRS1 to be (2.2 ± 0.4) × 10−3, (1.7 ± 0.3) × 10−3, and (1.8 ± 0.4) × 10−3, respectively, assuming Tex = 124 K. The degree of water deuteration of these isolated protostars are a factor of 2–4 higher relative to Class 0 protostars that are members of known nearby clustered star-forming regions. Conclusions. The results indicate that the water deuterium fractionation is influenced by the local cloud environment. This effect can be explained by variations in either collapse timescales or temperatures, which depends on local cloud dynamics and could provide a new method to decipher the history of young stars.

Funder

European Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3