Burst-induced coronal cooling in GS 1826–24

Author:

Sánchez-Fernández C.,Kajava J. J. E.,Poutanen J.,Kuulkers E.,Suleimanov V. F.

Abstract

Type I X-ray bursts in GS 1826–24, and in several other systems, may induce cooling of the hot inner accretion flow that surrounds the bursting neutron star. Given that GS 1826–24 remained persistently in the hard state over the period 2003–2008 and presented regular bursting properties, we stacked the spectra of the X-ray bursts detected by INTEGRAL (JEM-X and ISGRI) and XMM-Newton (RGS) during that period to study the effect of the burst photons on the properties of the Comptonizing medium. The extended energy range provided by these instruments allows the simultaneous observation of the burst and persistent emission spectra. We detect an overall change in the shape of the persistent emission spectrum in response to the burst photon shower. For the first time, we observe simultaneously a drop in the hard X-ray emission, together with a soft X-ray excess with respect to the burst blackbody emission. The hard X-ray drop can be explained by burst-induced coronal cooling, while the bulk of the soft X-ray excess can be described by fitting the burst emission with an atmosphere model, instead of a simple blackbody model. Traditionally, the persistent emission was assumed to be invariant during X-ray bursts, and more recently to change only in normalization but not in spectral shape; the observed change in the persistent emission level during X-ray bursts may thus trigger the revision of existing neutron star mass-radius constraints, as the derived values rely on the assumption that the persistent emission does not change during X-ray bursts. The traditional burst fitting technique leads to up to a 10% overestimation of the bolometric burst flux in GS 1826–24, which significantly hampers the comparisons of the KEPLER and MESA model against this “textbook burster”.

Funder

Academy of Finland

Deutsche Forschungsgemeinschaft

Ministry of Science and Higher Education of the Russian Federation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3