Incoherent fast variability of X-ray obscurers

Author:

De Marco B.,Adhikari T. P.,Ponti G.,Bianchi S.,Kriss G. A.,Arav N.,Behar E.,Branduardi-Raymont G.,Cappi M.,Costantini E.,Costanzo D.,di Gesu L.,Ebrero J.,Kaastra J. S.,Kaspi S.,Mao J.,Markowitz A.,Matt G.,Mehdipour M.,Middei R.,Paltani S.,Petrucci P. O.,Pinto C.,Różańska A.,Walton D. J.

Abstract

Context. Obscuration events caused by outflowing clumps or streams of high column density and low ionised gas, shown to absorb the X-ray continuum heavily, have been witnessed across a number of Seyfert galaxies. Aims. We report on the X-ray spectral-timing analysis of the December 2016 obscuration event in NGC 3783, which was aimed at probing variability of the X-ray obscurer on the shortest possible timescales. The main goals of this study are to obtain independent constraints on the density and, ultimately on the distance of the obscuring gas, as well as to characterise the impact of variable obscuration on the observed X-ray spectral-timing characteristics of Seyfert galaxies. Methods. We carried out a comparative analysis of NGC 3783 during unobscured (using archival 2000–2001 XMM-Newton data) and obscured states (using XMM-Newton and NuSTAR data from the 2016 observational campaign). The analysed timescales range between ten hours and about one hour. This study was then generalised to discuss the signatures of variable obscuration in the X-ray spectral-timing characteristics of Seyfert galaxies as a function of the physical properties of the obscuring gas. Results. The X-ray obscurer in NGC 3783 is found to vary on timescales between about one hour to ten hours. This variability is incoherent with respect to the variations of the X-ray continuum. A fast response (on timescales shorter than about 1.5 ks) of the ionisation state of the obscuring gas to the short timescale variability of the primary X-ray continuum provides a satisfactory interpretation of all the observed X-ray spectral-timing properties. This study enabled us to put independent constraints on the density and location of the obscuring gas. We found the gas to have a density of ne >  7.1 × 107 cm−3, which is consistent with a location in the broad line region.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3