Hydrodynamic simulations unravel the progenitor-supernova-remnant connection in SN 1987A

Author:

Orlando S.,Ono M.,Nagataki S.,Miceli M.,Umeda H.,Ferrand G.,Bocchino F.,Petruk O.,Peres G.,Takahashi K.,Yoshida T.

Abstract

Context. Massive stars end their lives in catastrophic supernova (SN) explosions. Key information on the explosion processes and on the progenitor stars can be extracted from observations of supernova remnants (SNRs), which are the outcome of SNe. Deciphering these observations, however, is challenging because of the complex morphology of SNRs. Aims. We aim to link the dynamical and radiative properties of the remnant of SN 1987A to the geometrical and physical characteristics of the parent aspherical SN explosion and to the internal structure of its progenitor star. Methods. We performed comprehensive three-dimensional hydrodynamic simulations which describe the long-term evolution of SN 1987A from the onset of the SN to the full-fledged remnant at the age of 50 years, accounting for the pre-SN structure of the progenitor star. The simulations include all physical processes relevant for the complex phases of SN evolution and for the interaction of the SNR with the highly inhomogeneous ambient environment around SN 1987A. Furthermore, the simulations follow the life cycle of elements from the synthesis in the progenitor star through the nuclear reaction network of the SN to the enrichment of the circumstellar medium as a result of the mixing of chemically homogeneous layers of ejecta. From the simulations, we synthesize observables that are to be compared with observations. Results. By comparing the model results with observations, we constrained the initial SN anisotropy causing Doppler shifts, observed in the emission lines of heavy elements from ejecta, and leading to the remnant evolution observed in the X-ray band in the last thirty years. In particular, we found that the high mixing of ejecta unveiled by high redshifts and broadenings of [Fe II] and 44Ti lines require a highly asymmetric SN explosion channeling a significant fraction of energy along an axis that is almost lying in the plane of the central equatorial ring around SN 1987A, roughly along the line-of-sight, but with an offset of 40°, with the lobe propagating away from the observer slightly more energetic than the other. Furthermore, we found unambiguously that the observed distribution of ejecta and the dynamical and radiative properties of the SNR can be best reproduced if the structure of the progenitor star was that of a blue supergiant which had resulted from the merging of two massive stars.

Funder

Partnership for Advanced Computing in Europe AISBL

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3