Effects of neighbouring planets on the formation of resonant dust rings in the inner Solar System

Author:

Sommer M.ORCID,Yano H.,Srama R.ORCID

Abstract

Context. Findings by the Helios and STEREO mission have indicated the presence of a resonant circumsolar ring of dust associated with Venus. Attempts to model this phenomenon as an analogue to the resonant ring of Earth – as a result of migrating dust trapped in external mean-motion resonances (MMRs) – have so far been unable to reproduce the observed dust feature. Other theories of origin have recently been put forward. However, the reason for the low trapping efficiency of Venus’s external MMRs remains unclear. Aims. Here we look into the nature of the dust trapping resonant phenomena that arise from the multi-planet configuration of the inner Solar System, aiming to add to the existent understanding of resonant dust rings in single planet systems. Methods. We numerically modelled resonant dust features associated with the inner planets and specifically looked into the dependency of these structures and the trapping efficiency of particular resonances on the configuration of planets. Results. Besides Mercury showing no resonant interaction with the migrating dust cloud, we find Venus, Earth, and Mars to considerably interfere with each other’s resonances, influencing their ability to form circumsolar rings. We find that the single most important reason for the weakness of Venus’s external MMR ring is the perturbing influence of its outer neighbour – Earth. In addition, we find Mercury and Mars to produce crescent-shaped density features, caused by a directed apsidal precession occurring in particles traversing their orbital region.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3