Identifying galaxies, quasars, and stars with machine learning: A new catalogue of classifications for 111 million SDSS sources without spectra

Author:

Clarke A. O.,Scaife A. M. M.,Greenhalgh R.,Griguta V.

Abstract

We used 3.1 million spectroscopically labelled sources from the Sloan Digital Sky Survey (SDSS) to train an optimised random forest classifier using photometry from the SDSS and the Widefield Infrared Survey Explorer. We applied this machine learning model to 111 million previously unlabelled sources from the SDSS photometric catalogue which did not have existing spectroscopic observations. Our new catalogue contains 50.4 million galaxies, 2.1 million quasars, and 58.8 million stars. We provide individual classification probabilities for each source, with 6.7 million galaxies (13%), 0.33 million quasars (15%), and 41.3 million stars (70%) having classification probabilities greater than 0.99; and 35.1 million galaxies (70%), 0.72 million quasars (34%), and 54.7 million stars (93%) having classification probabilities greater than 0.9. Precision, Recall, and F1 score were determined as a function of selected features and magnitude error. We investigate the effect of class imbalance on our machine learning model and discuss the implications of transfer learning for populations of sources at fainter magnitudes than the training set. We used a non-linear dimension reduction technique, Uniform Manifold Approximation and Projection, in unsupervised, semi-supervised, and fully-supervised schemes to visualise the separation of galaxies, quasars, and stars in a two-dimensional space. When applying this algorithm to the 111 million sources without spectra, it is in strong agreement with the class labels applied by our random forest model.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning-based photometric classification of galaxies, quasars, emission-line galaxies, and stars;Monthly Notices of the Royal Astronomical Society;2023-11-08

2. J-PLUS: galaxy-star-quasar classification for DR3;Monthly Notices of the Royal Astronomical Society;2023-11-02

3. Selection of powerful radio galaxies with machine learning;Astronomy & Astrophysics;2023-11

4. A Multimodal Transfer Learning Method for Classifying Images of Celestial Point Sources;Publications of the Astronomical Society of the Pacific;2023-10-01

5. The LSST AGN Data Challenge: Selection Methods;The Astrophysical Journal;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3