Does magnetic field impact tidal dynamics inside the convective zone of low-mass stars along their evolution?

Author:

Astoul A.ORCID,Mathis S.,Baruteau C.,Gallet F.,Strugarek A.,Augustson K. C.,Brun A. S.,Bolmont E.

Abstract

Context. The dissipation of the kinetic energy of wave-like tidal flows within the convective envelope of low-mass stars is one of the key physical mechanisms that shapes the orbital and rotational dynamics of short-period exoplanetary systems. Although low-mass stars are magnetically active objects, the question of how the star’s magnetic field impacts large-scale tidal flows and the excitation, propagation and dissipation of tidal waves still remains open. Aims. Our goal is to investigate the impact of stellar magnetism on the forcing of tidal waves, and their propagation and dissipation in the convective envelope of low-mass stars as they evolve. Methods. We have estimated the amplitude of the magnetic contribution to the forcing and dissipation of tidally induced magneto-inertial waves throughout the structural and rotational evolution of low-mass stars (from M to F-type). For this purpose, we have used detailed grids of rotating stellar models computed with the stellar evolution code STAREVOL. The amplitude of dynamo-generated magnetic fields is estimated via physical scaling laws at the base and the top of the convective envelope. Results. We find that the large-scale magnetic field of the star has little influence on the excitation of tidal waves in the case of nearly-circular orbits and coplanar hot-Jupiter planetary systems, but that it has a major impact on the way waves are dissipated. Our results therefore indicate that a full magneto-hydrodynamical treatment of the propagation and dissipation of tidal waves is needed to properly assess the impact of star-planet tidal interactions throughout the evolutionary history of low-mass stars hosting short-period massive planets.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3