Cosmic-ray acceleration and escape from post-adiabatic supernova remnants

Author:

Brose R.,Pohl M.,Sushch I.,Petruk O.,Kuzyo T.

Abstract

Context. Supernova remnants are known to accelerate cosmic rays on account of their nonthermal emission of radio waves, X-rays, and gamma rays. Although there are many models for the acceleration of cosmic rays in supernova remnants, the escape of cosmic rays from these sources has not yet been adequately studied. Aims. We aim to use our time-dependent acceleration code RATPaC to study the acceleration of cosmic rays and their escape in post-adiabatic supernova remnants and calculate the subsequent gamma-ray emission from inverse-Compton scattering and Pion decay. Methods. We performed spherically symmetric 1D simulations in which we simultaneously solved the transport equations for cosmic rays, magnetic turbulence, and the hydrodynamical flow of the thermal plasma in a volume large enough to keep all cosmic rays in the simulation. The transport equations for cosmic rays and magnetic turbulence were coupled via the cosmic-ray gradient and the spatial diffusion coefficient of the cosmic rays, while the cosmic-ray feedback onto the shock structure can be ignored. Our simulations span 100 000 years, thus covering the free-expansion, the Sedov–Taylor, and the beginning of the post-adiabatic phase of the remnant’s evolution. Results. At later stages of the evolution, cosmic rays over a wide range of energy can reside outside of the remnant, creating spectra that are softer than predicted by standard diffusive shock acceleration, and feature breaks in the 10 − 100 GeV-range. The total spectrum of cosmic rays released into the interstellar medium has a spectral index of s ≈ 2.4 above roughly 10 GeV which is close to that required by Galactic propagation models. We further find the gamma-ray luminosity to peak around an age of 4000 years for inverse-Compton-dominated high-energy emission. Remnants expanding in low-density media generally emit more inverse-Compton radiation, matching the fact that the brightest known supernova remnants – RCW86, Vela Jr., HESS J1731−347 and RX J1713.7−3946 – are all expanding in low density environments.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Could a Kilonova Kill: A Threat Assessment;The Astrophysical Journal;2024-01-24

2. Cosmic ray feedback in galaxies and galaxy clusters;The Astronomy and Astrophysics Review;2023-12

3. Inefficient acceleration of electrons in the shocked wind of the massive star Θ1 Ori C within the Trapezium Cluster;Monthly Notices of the Royal Astronomical Society;2023-11-08

4. The Maximum Energy of Shock-accelerated Cosmic Rays;The Astrophysical Journal;2023-11-01

5. EMU Detection of a Large and Low Surface Brightness Galactic SNR G288.8–6.3;The Astronomical Journal;2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3