Tips and tricks in linear imaging polarimetry of extended sources with FORS2 at the VLT

Author:

González-Gaitán S.ORCID,Mourão A. M.,Patat F.,Anderson J. P.ORCID,Cikota A.,Wiersema K.,Higgins A. B.,Silva K.ORCID

Abstract

Context. Polarimetry is a very powerful tool for uncovering various properties of astronomical objects that otherwise remain hidden in standard imaging or spectroscopic observations. While common observations only measure the intensity of light, polarimetric measurements allow us to distinguish and measure the two perpendicular components of the electric field associated with the incoming light. By using polarimetry it is possible to unveil asymmetries in supernova explosions, properties of intervening dust, characteristics of atmosphere of planets, among others. However, the reliable measurement of the low polarization signal from astronomical sources requires a good control of spurious instrumental polarization induced by the various components of the optical system and the detector. Aims. We perform a detailed multi-wavelength calibration study of the FORS2 instrument at the VLT operating in imaging polarimetric mode to characterize the spatial instrumental polarization that may affect the study of extended sources. Methods. We used imaging polarimetry of high signal-to-noise ratio blank field BVRI observations during the full moon, when the polarization is expected to be constant across the field of view and deviations originate from the instrument, and a crowded star cluster in broad-band RI and narrow-band Hα filters, where the individual polarization values of each star across the field can be measured. Results. We find an instrumental polarization pattern that increases radially outwards from the optical axis of the instrument reaching up to 1.4% at the edges, depending on the filter. Our results are closely approximated by an elliptical paraboloid down to less than ∼0.05% accuracy, and ∼0.02% when using non-analytic fits. We present 2D maps to correct for this spurious instrumental polarization. We also give several tips and tricks for analyzing polarimetric measurements of extended sources. Conclusions. FORS2 is a powerful instrument that allows the linear polarimetry of extended sources to be mapped. We present and discuss a methodology that can be used to measure the polarization of such sources, and to correct for the spatial polarization induced in the optical system. This methodology could be applied to polarimetric measurements using other dual-beam polarimeters.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference29 articles.

1. Stellar Spectropolarimetry with Retarder Waveplate and Beam Splitter Devices

2. Polarization singularities in the clear sky

3. Born M., & Wolf E. 1984, Principles of Optics, 6th edn. (New York: Pergamon Press), 808

4. Chandrasekhar S. 1960, Radiative Transfer (New York: Dover), 393

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3