Astrometric planet search around southern ultracool dwarfs

Author:

Lazorenko P. F.,Sahlmann J.

Abstract

We present an investigation of the stability of the two chips in the FORS2 camera CCD mosaic on the basis of astrometric observations of stars in 20 sky fields, some of which were monitored for four to seven years. We detected a smooth relative shear motion of the chips along their dividing line that is well approximated by a cubic function of time with an amplitude that reaches ∼0.3 pixels (px) or ∼38 mas over seven years. In a single case, we detected a step change of ∼0.06 px that occurred within four days. In the orthogonal direction that corresponds to the separation between the chips, the motion is a factor of 5–10 smaller. This chip instability in the camera significantly reduces the astrometric precision when the reduction uses reference stars located in both chips, and the effect is not accounted for explicitly. We found that the instability introduces a bias in stellar positions with an amplitude that increases with the observation time span. When our reduction methods and FORS2 images are used, it affects stellar positions like an excess random noise with an rms of ∼0.5 mas for a time span of three to seven years when left uncorrected. We demonstrate that an additional calibration step can adequately mitigate this and restore an astrometric accuracy of 0.12 mas, which is essential to achieve the goals of our planet-search program. These results indicate that similar instabilities could critically affect the astrometric performance of other large ground-based telescopes and extremely large telescopes that are equipped with large-format multi-chip detectors if no precautions are taken.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference19 articles.

1. An Improved Distortion Solution for theHubble Space Telescope’s WFPC2

2. Astrometric Calibration and Performance of the Dark Energy Camera

3. Davies R., Ageorges N., & Barl L. 2010, in Ground-based and Airborne Instrumentation for Astronomy III, Proc. SPIE, 7735, 77352A

4. THE DARK ENERGY CAMERA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3