KiDS-SQuaD

Author:

Khramtsov Vladislav,Sergeyev Alexey,Spiniello Chiara,Tortora Crescenzo,Napolitano Nicola R.,Agnello Adriano,Getman Fedor,de Jong Jelte T. A.,Kuijken Konrad,Radovich Mario,Shan HuanYuan,Shulga Valery

Abstract

Context.The KiDS Strongly lensed QUAsar Detection project (KiDS-SQuaD) is aimed at finding as many previously undiscovered gravitational lensed quasars as possible in the Kilo Degree Survey. This is the second paper of this series where we present a new, automatic object-classification method based on the machine learning technique.Aims.The main goal of this paper is to build a catalogue of bright extragalactic objects (galaxies and quasars) from the KiDS Data Release 4, with minimum stellar contamination and preserving the completeness as much as possible. We show here that this catalogue represents the perfect starting point to search for reliable gravitationally lensed quasar candidates.Methods.After testing some of the most used machine learning algorithms, decision-tree-based classifiers, we decided to use CatBoost, which was specifically trained with the aim of creating a sample of extragalactic sources that is as clean of stars as possible. We discuss the input data, define the training sample for the classifier, give quantitative estimates of its performances, and finally describe the validation results withGaiaDR2, AllWISE, and GAMA catalogues.Results.We built and made available to the scientific community the KiDS Bright EXtraGalactic Objects catalogue (KiDS-BEXGO), specifically created to find gravitational lenses but applicable to a wide number of scientific purposes. The KiDS-BEXGO catalogue is made of ≈6 million sources classified as quasars (≈200 000) and galaxies (≈5.7 M) up tor <  22m. To demonstrate the potential of the catalogue in the search for strongly lensed quasars, we selected ≈950 “Multiplets”: close pairs of quasars or galaxies surrounded by at least one quasar. We present cutouts and coordinates of the 12 most reliable gravitationally lensed quasar candidates. We showed that employing a machine learning method decreases the stellar contaminants within the gravitationally lensed candidates, comparing the current results to the previous ones, presented in the first paper from this series.Conclusions.Our work presents the first comprehensive identification of bright extragalactic objects in KiDS DR4 data, which is, for us, the first necessary step towards finding strong gravitational lenses in wide-sky photometric surveys, but has also many other more general astrophysical applications.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3