Long-period comet C/1963 A1 (Ikeya), the probable parent body of π-Hydrids, δ-Corvids, November α-Sextantids, and ϑ-Leonids

Author:

Neslušan L.ORCID,Hajduková M.

Abstract

Aims. We study the meteoroid stream of the long-period comet C/1963 A1 (Ikeya) to predict the meteor showers originating in this comet. We also aim to identify the predicted showers with their real counterparts. Methods. We modeled 23 parts of a theoretical meteoroid stream of the parent comet considered. Each of our models is characterized by a single value of the evolutionary time and a single value of the strength of the Poynting–Robertson effect. The evolutionary time is defined as the time before the present when the stream is modeled and when we start to follow its dynamical evolution. This period ranges from 10 000 to 80 000 yr. In each model, we considered a stream consisting of 10 000 test particles that dynamically evolve, and their dynamics is followed via a numerical integration up to the present. At the end of the integration, we analyzed the mean orbital characteristics of particles in the orbits approaching Earth’s orbit, which thus enabled us to predict a shower related to the parent comet. We attempted to identify each predicted shower with a shower recorded in the International Astronomical Union Meteor Data Center list of all showers. In addition, we tried to separate, often successfully, a real counterpart of each predicted shower from the databases of real meteors. Results. Many modeled parts of the stream of comet C/1963 A1 are identified with the corresponding real showers in three video-meteor databases. No real counterpart is found in the IAU MDC photographic or radio-meteor data. Specifically, we predict five showers related to C/1963 A1. Two predicted showers are identified with π-Hydrids #101 and δ-Corvids #729. The third predicted shower is only vaguely similar to November α-Sextantids #483, when its mean orbit is compared with the mean orbit of the November α-Sextantids in the IAU MDC list of all showers. However, the prediction is very consistent with the corresponding showers newly separated from three video databases. Another predicted shower has no counterpart in the IAU MDC list, but there is a good match of the prediction and a shower that we separated from the Cameras for Allsky Meteor Surveillance video data. We name this new shower ϑ-Leonids. The last of the predicted showers should be relatively low in number and, hence, no real counterparts were either found in the IAU MDC list or separated from any considered database.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3