Toward a realistic macroscopic parametrization of space plasmas with regularized κ-distributions

Author:

Lazar M.,Scherer K.,Fichtner H.,Pierrard V.

Abstract

So-called κ-distributions are widely invoked in the analysis of nonequilibrium plasmas from space, although a general macroscopic parametrization as known for Maxwellian plasmas near thermal equilibrium is prevented by the diverging moments of order l ≥ 2κ − 1. To overcome this critical limitation, recently novel regularized κ-distributions (RK) have been introduced, including various anisotropic models with well-defined moments for any value of κ >  0. In this paper, we present an evaluation of the pressure and heat flux of electron populations, as provided by moments of isotropic and anisotropic RKs for conditions typically encountered in the solar wind. We obtained finite values even for low values of κ <  3/2, for which the pressure and heat flux moments of standard κ-distributions are not defined. These results were also contrasted with the macroscopic parameters obtained for Maxwellian populations, which show a significant underestimation especially if an important suprathermal population is present (e.g., for κ <  2), but ignored. Despite the collisionless nature of solar wind plasma, a realistic characterization as a fluid becomes thus possible, retaining all nonthermal features of plasma particles.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3