Contribution from stars stripped in binaries to cosmic reionization of hydrogen and helium

Author:

Götberg Y.ORCID,de Mink S. E.ORCID,McQuinn M.,Zapartas E.ORCID,Groh J. H.,Norman C.

Abstract

Massive stars are often found in binary systems, and it has been argued that binary products boost the ionizing radiation of stellar populations. Accurate predictions for binary products are needed to understand and quantify their contribution to cosmic reionization. We investigate the contribution of stars stripped in binaries because (1) they are, arguably, the best-understood products of binary evolution, (2) we recently produced the first radiative transfer calculations for the atmospheres of these stripped stars that predict their ionizing spectra, and (3) they are very promising sources because they boost the ionizing emission of stellar populations at late times. This allows stellar feedback to clear the surroundings such that a higher fraction of their photons can escape and ionize the intergalactic medium. Combining our detailed predictions for the ionizing spectra with a simple cosmic reionization model, we estimate that stripped stars contributed tens of percent of the photons that caused cosmic reionization of hydrogen, depending on the assumed escape fractions. More importantly, stripped stars harden the ionizing emission. We estimate that the spectral index for the ionizing part of the spectrum can increase to −1 compared to ≲ − 2 for single stars. At high redshift, stripped stars and massive single stars combined dominate the He II-ionizing emission, but we expect that active galactic nuclei drive cosmic helium reionization. Further observational consequences we expect are (1) high ionization states for the intergalactic gas surrounding stellar systems, such as C IV and Si IV, and (2) additional heating of the intergalactic medium of up to a few thousand Kelvin. Quantifying these warrants the inclusion of accurate models for stripped stars and other binary products in full cosmological simulations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3