Protostellar accretion in low mass metal poor stars and the cosmological lithium problem

Author:

Tognelli EmanueleORCID,Prada Moroni Pier Giorgio,Degl’Innocenti Scilla,Salaris Maurizio,Cassisi Santi

Abstract

Context. The cosmological lithium problem, that is, the discrepancy between the lithium abundance predicted by the Big Bang nucleosynthesis and the one observed for the stars of the “Spite plateau”, is one of the long standing problems of modern astrophysics. Recent hints for a possible solution involve lithium burning induced by protostellar mass accretion on Spite plateau stars. However, to date, most of the protostellar and pre-main sequence stellar models that take mass accretion into account have been computed at solar metallicity, and a detailed analysis on the impact of protostellar accretion on the lithium evolution in the metal-poor regime, which is relevant for stars in the Spite plateau, is completely missing. Aims. The purpose of this paper is to fill this gap, analysing, in detail, for the first time the effect of protostellar accretion on low metallicity low-mass stars with a focus on pre-main sequence lithium evolution. Methods. We computed the evolution from the protostar to the main-sequence phase of accreting models with final masses equal to 0.7 and 0.8 M, and three metallicities Z = 0.0001, Z = 0.0010, and Z = 0.0050, corresponding to [Fe/H] ∼ −2.1, −1.1 (typical of Spite plateau stars), and [Fe/H] ∼ −0.42, respectively. We followed the temporal evolution of the chemical composition by considering nuclear burning, convective mixing, and diffusion. The effects of changing some of the main parameters affecting accreting models, that is the accretion energy (i.e. cold versus hot accretion), the initial seed mass Mseed and radius Rseed, and the mass accretion rate (also considering episodic accretion), have been investigated in detail. Results. As for the main stellar properties and in particular the surface 7Li abundance, hot accretion models converge to standard non-accreting ones within 1 Myr, regardless of the actual value of Mseed, Rseed, and . Also, cold accretion models with a relatively large Mseed (≳10 MJ) or Rseed (≳1 R) converge to standard non-accreting ones in less than about 10−20 Myr. However, a drastically different evolution occurs whenever a cold protostellar accretion process starts from small values of Mseed and Rseed (Mseed ∼ 1 MJ, Rseed ≲ 1 R). These models almost entirely skip the standard Hayashi track evolution and deplete lithium before the end of the accretion phase. The exact amount of depletion depends on the actual combination of the accretion parameters (, Mseed, and Rseed), achieving in some cases the complete exhaustion of lithium in the whole star. Finally, the lithium evolution in models accounting for burst accretion episodes or for an initial hot accretion followed by a cold accretion phase closely resemble that of standard non-accreting ones. Conclusions. To significantly deplete lithium in low-mass metal poor stars by means of protostellar accretion, a cold accretion scenario starting from small initial Mseed and Rseed is required. Even in this extreme configuration leading to a non-standard evolution that misses almost entirely the standard Hayashi track, an unsatisfactory fine tuning of the parameters governing the accretion phase is required to deplete lithium in stars of different mass and metallicity – starting from the Big Bang nucleosynthesis abundance – in such a way as to produce the observed Spite plateau.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3