Investigating the nature of the extended structure around the Herbig star RCrA using integral field and high-resolution spectroscopy

Author:

Rigliaco E.ORCID,Gratton R.,Mesa D.,D’Orazi V.,Bonnefoy M.,Alcalà J. M.,Antoniucci S.,Bacciotti F.,Dima M.,Nisini B.,Podio L.,Barbieri M.,Claudi R.,Desidera S.,Garufi A.,Hugot E.,Janson M.,Langlois M.,Rickman E. L.,Sissa E.,Ubeira Gabellini M.,van der Plas G.,Zurlo A.,Magnard Y.,Perret D.,Roelfsema R.,Weber L.

Abstract

Context. We present a detailed analysis of the extended structure detected around the young and close-by Herbig Ae/Be star R CrA. This is a young triple system with an intermediate mass central binary whose separation is of the order of a few tens of the radii of the individual components, and an M-star companion at about 30 au. Aims. Our aim is to understand the nature of the extended structure by means of combining integral-field and high-resolution spectroscopy. Methods. We conducted the analysis based on FEROS archival optical spectroscopy data and adaptive optics images and integral-field spectra obtained with SINFONI and SPHERE at the VLT. Results. The observations reveal a complex extended structure that is composed of at least two components: a non-uniform wide cavity whose walls are detected in continuum emission up to 400 au, and a collimated wiggling-jet detected in the emission lines of helium and hydrogen. Moreover, the presence of [Fe II] emission projected close to the cavity walls suggests the presence of a slower moving wind, most likely a disk wind. The multiple components of the optical forbidden lines also indicate the presence of a high-velocity jet co-existing with a slow wind. We constructed a geometrical model of the collimated jet flowing within the cavity using intensity and velocity maps, finding that its wiggling is consistent with the orbital period of the central binary. The cavity and the jet do not share the same position angle, suggesting that the jet is itself experiencing a precession motion possibly due to the wide M-dwarf companion. Conclusions. We propose a scenario that closely agrees with the general expectation of a magneto-centrifugal-launched jet. These results build upon the extensive studies already conducted on R CrA.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3