Shock acceleration efficiency in radio relics

Author:

Botteon A.,Brunetti G.,Ryu D.,Roh S.

Abstract

Context. Radio relics in galaxy clusters are giant diffuse synchrotron sources powered in cluster outskirts by merger shocks. Although the relic–shock connection has been consolidated in recent years by a number of observations, the details of the mechanisms leading to the formation of relativistic particles in this environment are still not well understood. Aims. The diffusive shock acceleration (DSA) theory is a commonly adopted scenario to explain the origin of cosmic rays at astrophysical shocks, including those in radio relics in galaxy clusters. However, in a few specific cases it has been shown that the energy dissipated by cluster shocks is not enough to reproduce the luminosity of the relics via DSA of thermal particles. Studies based on samples of radio relics are required to further address this limitation of the mechanism. Methods. In this paper, we focus on ten well-studied radio relics with underlying shocks observed in the X-rays and calculate the electron acceleration efficiency of these shocks that is necessary to reproduce the observed radio luminosity of the relics. Results. We find that in general the standard DSA cannot explain the origin of the relics if electrons are accelerated from the thermal pool with an efficiency significantly smaller than 10%. Our results show that other mechanisms, such as shock re-acceleration of supra-thermal seed electrons or a modification of standard DSA, are required to explain the formation of radio relics.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Deep uGMRT View of the Ultra-steep Spectrum Radio Halo in A521;The Astrophysical Journal;2024-02-01

2. A New Enigmatic Radio Relic in the Low-mass Cluster Abell 2108;Monthly Notices of the Royal Astronomical Society;2023-12-23

3. Shock imprints on the radio mini halo in RBS 797;Astronomy & Astrophysics;2023-12

4. The Planck clusters in the LOFAR sky;Astronomy & Astrophysics;2023-12

5. A Formation Mechanism for “Wrong Way” Radio Relics;The Astrophysical Journal Letters;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3