SYMBA: An end-to-end VLBI synthetic data generation pipeline

Author:

Roelofs F.ORCID,Janssen M.ORCID,Natarajan I.,Deane R.ORCID,Davelaar J.ORCID,Olivares H.ORCID,Porth O.,Paine S. N.,Bouman K. L.ORCID,Tilanus R. P. J.,van Bemmel I. M.ORCID,Falcke H.ORCID,Akiyama K.,Alberdi A.ORCID,Alef W.,Asada K.,Azulay R.ORCID,Baczko A.,Ball D.,Baloković M.,Barrett J.,Bintley D.,Blackburn L.,Boland W.,Bower G. C.,Bremer M.,Brinkerink C. D.ORCID,Brissenden R.,Britzen S.,Broderick A. E.,Broguiere D.,Bronzwaer T.,Byun D.,Carlstrom J. E.,Chael A.,Chan C.,Chatterjee S.,Chatterjee K.ORCID,Chen M.,Chen Y.,Cho I.ORCID,Christian P.,Conway J. E.,Cordes J. M.,Crew G. B.,Cui Y.ORCID,De Laurentis M.ORCID,Dempsey J.,Desvignes G.,Dexter J.,Doeleman S. S.,Eatough R. P.,Fish V. L.,Fomalont E.,Fraga-Encinas R.ORCID,Friberg P.,Fromm C. M.,Gómez J. L.ORCID,Galison P.,Gammie C. F.ORCID,García R.,Gentaz O.,Georgiev B.,Goddi C.,Gold R.ORCID,Gu M.,Gurwell M.,Hada K.,Hecht M. H.,Hesper R.,Ho L. C.,Ho P.,Honma M.,Huang C. L.ORCID,Huang L.,Hughes D. H.,Ikeda S.,Inoue M.ORCID,Issaoun S.ORCID,James D. J.,Jannuzi B. T.,Jeter B.,Jiang W.,Johnson M. D.,Jorstad S.,Jung T.,Karami M.,Karuppusamy R.,Kawashima T.,Keating G. K.,Kettenis M.ORCID,Kim J.,Kim J.,Kim J.,Kino M.,Koay J. Y.ORCID,Koch P. M.,Koyama S.,Kramer M.ORCID,Kramer C.ORCID,Krichbaum T. P.,Kuo C.,Lauer T. R.,Lee S.,Li Y.,Li Z.,Lindqvist M.ORCID,Lico R.ORCID,Liu K.ORCID,Liuzzo E.,Lo W.ORCID,Lobanov A. P.,Loinard L.ORCID,Lonsdale C.,Lu R.,MacDonald N. R.ORCID,Mao J.ORCID,Markoff S.,Marrone D. P.ORCID,Marscher A. P.ORCID,Martí-Vidal I.ORCID,Matsushita S.,Matthews L. D.ORCID,Medeiros L.ORCID,Menten K. M.,Mizuno Y.ORCID,Mizuno I.,Moran J. M.,Moriyama K.,Moscibrodzka M.ORCID,Müller C.,Nagai H.,Nagar N. M.ORCID,Nakamura M.,Narayan R.ORCID,Narayanan G.,Neri R.ORCID,Ni C.,Noutsos A.,Okino H.,Olivares H.,Ortiz-León G. N.ORCID,Oyama T.,Özel F.,Palumbo D. C. M.,Patel N.,Pen U.,Pesce D. W.ORCID,Piétu V.,Plambeck R.,PopStefanija A.,Prather B.,Preciado-López J. A.,Psaltis D.,Pu H.,Ramakrishnan V.ORCID,Rao R.,Rawlings M. G.ORCID,Raymond A. W.,Rezzolla L.ORCID,Ripperda B.,Rogers A.,Ros E.,Rose M.,Roshanineshat A.,Rottmann H.,Roy A. L.ORCID,Ruszczyk C.,Ryan B. R.,Rygl K. L. J.,Sánchez S.,Sánchez-Arguelles D.,Sasada M.,Savolainen T.ORCID,Schloerb F. P.,Schuster K.,Shao L.ORCID,Shen Z.ORCID,Small D.,Won Sohn B.ORCID,SooHoo J.ORCID,Tazaki F.,Tiede P.,Titus M.,Toma K.,Torne P.,Traianou E.ORCID,Trent T.,Trippe S.ORCID,Tsuda S.,van Langevelde H. J.ORCID,van Rossum D. R.ORCID,Wagner J.,Wardle J.,Weintroub J.ORCID,Wex N.,Wharton R.,Wielgus M.ORCID,Wong G. N.,Wu Q.,Young A.,Young K.,Younsi Z.ORCID,Yuan F.,Yuan Y.ORCID,Zensus J. A.,Zhao G.ORCID,Zhao S.ORCID,Zhu Z.

Abstract

Context. Realistic synthetic observations of theoretical source models are essential for our understanding of real observational data. In using synthetic data, one can verify the extent to which source parameters can be recovered and evaluate how various data corruption effects can be calibrated. These studies are the most important when proposing observations of new sources, in the characterization of the capabilities of new or upgraded instruments, and when verifying model-based theoretical predictions in a direct comparison with observational data. Aims. We present the SYnthetic Measurement creator for long Baseline Arrays (SYMBA), a novel synthetic data generation pipeline for Very Long Baseline Interferometry (VLBI) observations. SYMBA takes into account several realistic atmospheric, instrumental, and calibration effects. Methods. We used SYMBA to create synthetic observations for the Event Horizon Telescope (EHT), a millimetre VLBI array, which has recently captured the first image of a black hole shadow. After testing SYMBA with simple source and corruption models, we study the importance of including all corruption and calibration effects, compared to the addition of thermal noise only. Using synthetic data based on two example general relativistic magnetohydrodynamics (GRMHD) model images of M 87, we performed case studies to assess the image quality that can be obtained with the current and future EHT array for different weather conditions. Results. Our synthetic observations show that the effects of atmospheric and instrumental corruptions on the measured visibilities are significant. Despite these effects, we demonstrate how the overall structure of our GRMHD source models can be recovered robustly with the EHT2017 array after performing calibration steps, which include fringe fitting, a priori amplitude and network calibration, and self-calibration. With the planned addition of new stations to the EHT array in the coming years, images could be reconstructed with higher angular resolution and dynamic range. In our case study, these improvements allowed for a distinction between a thermal and a non-thermal GRMHD model based on salient features in reconstructed images.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference96 articles.

1. Superresolution Full-polarimetric Imaging for Radio Interferometry with Sparse Modeling

2. Astropy: A community Python package for astronomy

3. Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions

4. Backes M., Müller C., Conway J. E., et al. 2016, Proceedings of the 4th Annual Conference on High Energy Astrophysics in Southern Africa (HEASA 2016), 25–26 August, 2016, South African Astronomical Observatory (SAAO), Cape Town, South Africa, 29

5. Electron and Proton Acceleration in Trans-relativistic Magnetic Reconnection: Dependence on Plasma Beta and Magnetization

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3