Probing episodic accretion with chemistry: CALYPSO observations of the very-low-luminosity Class 0 protostar IRAM 04191+1522

Author:

Anderl S.,Maret S.,Cabrit S.,Maury A. J.,Belloche A.,André Ph.,Bacmann A.,Codella C.,Podio L.,Gueth F.

Abstract

Context. The process of mass accretion in the earliest phases of star formation is still not fully understood: does the accretion rate smoothly decline with the age of the protostar or are there short, intermittent accretion bursts? The latter option would also yield the possibility for very low-luminosity objects (VeLLOs) to be precursors of solar-type stars, even though they do not seem to have sufficiently high accretion rates to reach stellar masses during their protostellar lifetime. Nevertheless, probing such intermittent events in the deeply embedded phase is not easy. Chemical signatures in the protostellar envelope can trace a past accretion burst. Aims. We aim to explore whether or not the observed C18O and N2H+ emission pattern towards the VeLLO IRAM 04191+1522 can be understood in the framework of a scenario where the emission is chemically tracing a past accretion burst. Methods. We used high-angular-resolution Plateau de Bure Interferometer (PdBI) observations of C18O and N2H+ towards IRAM 04191+1522 that were obtained as part of the CALYPSO IRAM Large Program (Continuum And Lines in Young ProtoStellar Objects). We model these observations using a chemical code with a time-dependent physical structure coupled with a radiative transfer module, where we allow for variations in the source luminosity. Results. We find that the N2H+ line emission shows a central hole, with the N2H+ emission peaking at a radius of about 10′′ (1400 au) from the source, while the C18O emission is compact (1.3′′ FWHM, corresponding to 182 au). The morphology of these two lines cannot be reproduced with a constant luminosity model based on the present-day internal luminosity (0.08 L). However, the N2H+ peaks are consistent with a constant-luminosity model of 12 L. Using a model with time-dependent temperature and density profiles, we show that the observed N2H+ peak emission could indeed be caused by a past accretion burst with a luminosity 150 times higher than the present-day luminosity. Such a burst should have occurred a couple of hundred years ago. Conclusions. We suggest that an accretion burst occurred in IRAM 04191+1522 in the recent past. If such bursts are common and sufficiently long in VeLLOs, they could lead to higher accretion onto the central object than their luminosity suggests. For IRAM 04191 in particular, our results yield an estimated final mass of 0.2–0.25 M by the end of the Class 0 phase, which would make this object a low-mass star rather than a brown dwarf. More generally, our analysis demonstrates that the combination of observations of N2H+ and C18O is a more reliable diagnostic of past outburst activity than C18O or N2H+ emission alone.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An outburst and FU Ori-type disc of a former low-luminosity protostar;Monthly Notices of the Royal Astronomical Society;2023-12-20

2. Protostellar outflows: a window to the past;Monthly Notices of the Royal Astronomical Society;2021-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3